De Souza Leonardo A, Da Silva Haroldo C, De Almeida Wagner B
Departamento de Química Inorgânica Instituto de Química, Universidade Federal Fluminense (UFF), Outeiro de São João Batista s/n, Campus do Valonguinho 24020-141, Centro Niterói RJ Brazil.
ChemistryOpen. 2018 Nov 14;7(11):902-913. doi: 10.1002/open.201800209. eCollection 2018 Nov.
As the knowledge of the predominant molecular structure of antioxidant and anticancer flavonoid rutin in solution is very important for understanding the mechanism of action, a quantum chemical investigation of plausible rutin structures including solvent effects is of relevance. In this work, DFT calculations were performed to find possible minimum energy structures for the rutin molecule. H NMR chemical shift DFT calculations were carried out in DMSO solution using the polarizable continuum model (PCM) to simulate the solvent effect. Analysis of the experimental and theoretical H NMR chemical shift profiles offers a powerful fingerprint criterion to determine the predominant molecular structure in solution. Therefore, our aim is to find the best match between experimental (in DMSO) and theoretical (PCM-DMSO) H NMR spectrum profiles. Among 34 optimized structures located on the potential energy surface, we found that structure , with a B-ring deviated 30° from a planar configuration (geometry usually assumed for polyphenols), showed an almost perfect agreement with experimental the H NMR pattern when compared to the corresponding fully optimized planar geometry. This structure is also predicted as the global minimum based on room-temperature Gibbs free energy calculations in solution and, therefore, should be experimentally observed. This is new and valuable structural information regarding structure-activity relationship studies, and such information is hard to obtain by experimentalists without the aid of the X-ray diffraction technique.
由于了解抗氧化剂和抗癌类黄酮芦丁在溶液中的主要分子结构对于理解其作用机制非常重要,因此对包括溶剂效应在内的芦丁可能结构进行量子化学研究具有重要意义。在这项工作中,进行了密度泛函理论(DFT)计算以寻找芦丁分子可能的最低能量结构。使用极化连续介质模型(PCM)在二甲基亚砜(DMSO)溶液中进行了氢核磁共振(H NMR)化学位移DFT计算,以模拟溶剂效应。对实验和理论H NMR化学位移谱的分析提供了一个强大的指纹标准,用于确定溶液中的主要分子结构。因此,我们的目标是找到实验(在DMSO中)和理论(PCM-DMSO)H NMR谱图之间的最佳匹配。在势能面上找到的34个优化结构中,我们发现结构 ,其B环与平面构型偏离30°(通常假定的多酚几何构型),与相应的完全优化平面几何构型相比,与实验H NMR图谱显示出几乎完美的一致性。基于溶液中室温吉布斯自由能计算,该结构也被预测为全局最小值,因此应该可以通过实验观察到。这是关于构效关系研究的新的有价值的结构信息,而且如果没有X射线衍射技术的帮助,实验人员很难获得此类信息。