Zhang Putao, Hu Zhiqiang, Wang Yan, Qin Yiying, Li Wenqin, Wang Jinmin
1Institute of New Energy Material, Dalian Polytechnic University, Dalian, 116034 People's Republic of China.
2School of Environmental and Materials Engineering, College of Engineering, Shanghai Second Polytechnic University, Shanghai, 201209 People's Republic of China.
Nanomicro Lett. 2016;8(3):232-239. doi: 10.1007/s40820-015-0081-1. Epub 2016 Feb 2.
A bi-layer photoanode for dye-sensitized solar cell (DSSC) was fabricated, in which TiO hollow spheres (THSs) were designed as a scattering layer and P25/multi-walled carbon nanotubes (MWNTs) as an under-layer. The THSs were synthesized by a sacrifice template method and showed good light scattering ability as an over-layer of the photoanode. MWNTs were mixed with P25 to form an under-layer of the photoanode to improve the electron transmission ability of the photoanode. The power conversion efficiency of this kind of DSSC with bi-layer was enhanced to 5.13 %, which is 14.25 % higher than that of pure P25 DSSC.
A bi-layer composite photoanode based on P25/MWNTs-THSs with improved light scattering and electron transmission, which will provide a new insight into fabrication and structure design of highly efficient dye-sensitized solar cells.
制备了一种用于染料敏化太阳能电池(DSSC)的双层光阳极,其中TiO空心球(THS)被设计为散射层,P25/多壁碳纳米管(MWNT)作为底层。通过牺牲模板法合成了THS,作为光阳极的上层显示出良好的光散射能力。将MWNT与P25混合形成光阳极的底层,以提高光阳极的电子传输能力。这种双层DSSC的功率转换效率提高到了5.13%,比纯P25 DSSC高14.25%。
基于P25/MWNTs-THS的双层复合光阳极,具有改善的光散射和电子传输性能,这将为高效染料敏化太阳能电池的制备和结构设计提供新的思路。