Pander Adam, Hatta Akimitsu, Furuta Hiroshi
1Department of Electronic and Photonic Systems Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi, 782-8502 Japan.
2Center for Nanotechnology, Research Institute, Kochi University of Technology, Tosayamada, Kami, Kochi, 782-8502 Japan.
Nanomicro Lett. 2017;9(4):44. doi: 10.1007/s40820-017-0145-5. Epub 2017 Apr 8.
Anisotropic materials, like carbon nanotubes (CNTs), are the perfect substitutes to overcome the limitations of conventional metamaterials; however, the successful fabrication of CNT forest metamaterial structures is still very challenging. In this study, a new method utilizing a focused ion beam (FIB) with additional secondary etching is presented, which can obtain uniform and fine patterning of CNT forest nanostructures for metamaterials and ranging in sizes from hundreds of nanometers to several micrometers. The influence of the FIB processing parameters on the morphology of the catalyst surface and the growth of the CNT forest was investigated, including the removal of redeposited material, decreasing the average surface roughness (from 0.45 to 0.15 nm), and a decrease in the thickness of the Fe catalyst. The results showed that the combination of FIB patterning and secondary etching enabled the growth of highly aligned, high-density CNT forest metamaterials. The improvement in the quality of single-walled CNTs (SWNTs), defined by the very high G/D peak ratio intensity of 10.47, demonstrated successful fine patterning of CNT forest for the first time. With a FIB patterning depth of 10 nm and a secondary etching of 0.5 nm, a minimum size of 150 nm of CNT forest metamaterials was achieved. The development of the FIB secondary etching method enabled for the first time, the fabrication of SWNT forest metamaterials for the optical and infrared regime, for future applications, e.g., in superlenses, antennas, or thermal metamaterials.
各向异性材料,如碳纳米管(CNT),是克服传统超材料局限性的理想替代品;然而,碳纳米管森林超材料结构的成功制造仍然极具挑战性。在本研究中,提出了一种利用聚焦离子束(FIB)并辅以二次蚀刻的新方法,该方法能够获得用于超材料的尺寸范围从数百纳米到几微米的均匀且精细图案化的碳纳米管森林纳米结构。研究了FIB加工参数对催化剂表面形态和碳纳米管森林生长的影响,包括去除再沉积材料、降低平均表面粗糙度(从0.45降至0.15 nm)以及铁催化剂厚度的减小。结果表明,FIB图案化和二次蚀刻相结合能够生长高度取向、高密度的碳纳米管森林超材料。由高达10.47的G/D峰比强度所定义的单壁碳纳米管(SWNT)质量的提高,首次证明了碳纳米管森林的成功精细图案化。在FIB图案化深度为10 nm且二次蚀刻为0.5 nm的情况下,实现了尺寸最小为150 nm的碳纳米管森林超材料。FIB二次蚀刻方法的开发首次实现了用于光学和红外领域的SWNT森林超材料的制造,以用于未来的应用,例如在超透镜、天线或热超材料中。