Suppr超能文献

肉桂醛-氨基酸席夫碱类化合物的抑菌活性筛选、合成及定量构效关系研究。

Screening, Synthesis, and QSAR Research on Cinnamaldehyde-Amino Acid Schiff Base Compounds as Antibacterial Agents.

机构信息

School of Engineering, Zhejiang A&F University, Lin'an 311300, China.

Key Laboratory of Bio-Based Material Science and Technology of the Ministry of Education, Northeast Forestry University, Harbin 150040, China.

出版信息

Molecules. 2018 Nov 20;23(11):3027. doi: 10.3390/molecules23113027.

Abstract

Development of new drugs is one of the solutions to fight against the existing antimicrobial resistance threat. Cinnamaldehyde-amino acid Schiff base compounds, are newly discovered compounds that exhibit good antibacterial activity against gram-positive and gram-negative bacteria. Quantitative structure⁻activity relationship (QSAR) methodology was applied to explore the correlation between antibacterial activity and compound structures. The two best QSAR models showed R² = 0.9354, F = 57.96, and s² = 0.0020 against , and R² = 0.8946, F = 33.94, and s² = 0.0043 against . The model analysis showed that the antibacterial activity of cinnamaldehyde compounds was significantly affected by the polarity parameter/square distance and the minimum atomic state energy for an H atom. According to the best QSAR model, the screening, synthesis, and antibacterial activity of three cinnamaldehyde-amino acid Schiff compounds were reported. The experiment value of antibacterial activity demonstrated that the new compounds possessed excellent antibacterial activity that was comparable to that of ciprofloxacin.

摘要

开发新的药物是应对现有抗菌药物耐药性威胁的解决方案之一。肉桂醛-氨基酸席夫碱化合物是新发现的化合物,对革兰氏阳性菌和革兰氏阴性菌表现出良好的抗菌活性。定量构效关系(QSAR)方法被应用于探索抗菌活性与化合物结构之间的相关性。两个最好的 QSAR 模型分别对 显示出 R² = 0.9354、F = 57.96 和 s² = 0.0020 的相关性,对 显示出 R² = 0.8946、F = 33.94 和 s² = 0.0043 的相关性。模型分析表明,肉桂醛化合物的抗菌活性显著受到极性参数/平方距离和 H 原子的最小原子状态能量的影响。根据最佳 QSAR 模型,报道了三种肉桂醛-氨基酸席夫碱化合物的筛选、合成和抗菌活性。抗菌活性的实验值表明,新化合物具有优异的抗菌活性,可与环丙沙星相媲美。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5cc/6278255/3c6611835c04/molecules-23-03027-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验