Suppr超能文献

基于新型期望最大化的机器学习卡尔曼估计框架用于随机三态微管信号的超分辨率

Novel EM based ML Kalman estimation framework for superresolution of stochastic three-states microtubule signal.

作者信息

Menon Vineetha, Yarahmadian Shantia, Rezania Vahid

机构信息

Department of Computer Science, University of Alabama in Huntsville, Huntsville, AL, USA.

Department of Mathematics and Statistics, Mississippi State University, Starkville, MS, USA.

出版信息

BMC Syst Biol. 2018 Nov 22;12(Suppl 6):112. doi: 10.1186/s12918-018-0631-5.

Abstract

BACKGROUND

Recent research has found that abnormal functioning of Microtubules (MTs) could be linked to fatal diseases such as Alzheimer's. Hence, there is an imminent need to understand the implications of MTs for disease- diagnosis. However, studies of cellular processes like MTs are often constrained by physical limitations of their data acquisition systems such as optical microscopes and are vulnerable to either destruction of the specimen or the probe. In addition, study of MTs is challenged with non-uniform sampling of the MT dynamic instability phenomenon relative to its time-lapse observation of the cellular processes. Thus, the above caveats limit the overall period of time that the MT data can be collected, thereby causing limited data availability scenario.

RESULTS

In this work, two novel superresolution frameworks based on Expectation Maximization (EM) based Maximum Likelihood (ML) estimation using Kalman filters (MLK) technique are proposed to address the issues of non-uniform sampling and limited data availability of MT signals. The proposed MLK methods optimizes prediction of missing observations in the MT signal through information extraction using correlation-based patch processing and principal component analysis -based mutual information. Experimental results prove that the proposed MLK-based superresolution methods outperformed nonlinear interpolation and compressed sensing methods.

CONCLUSIONS

This work aims to address limited data availability and data/observation loss incurred due to non-uniform sampling of biological signals such as MTs. For this purpose, statistical modelling of stochastic MT signals using EM based ML driven Kalman estimation (MLK) is considered as a fundamental framework for prediction of missing MT observations. It was experimentally validated that the proposed superresolution methods provided superior overall performance, better MT signal estimation using fewer samples, high SNR, low errors, and better MT parameter estimation than other methods.

摘要

背景

最近的研究发现,微管(MTs)功能异常可能与阿尔茨海默氏症等致命疾病有关。因此,迫切需要了解微管对疾病诊断的影响。然而,对微管等细胞过程的研究往往受到其数据采集系统(如光学显微镜)物理限制的约束,并且容易受到样本或探针破坏的影响。此外,相对于细胞过程的延时观察,微管动态不稳定性现象的非均匀采样给微管研究带来了挑战。因此,上述限制因素限制了微管数据的总体采集时间,从而导致数据可用性有限的情况。

结果

在这项工作中,提出了两种基于期望最大化(EM)的最大似然(ML)估计并使用卡尔曼滤波器(MLK)技术的新型超分辨率框架,以解决微管信号的非均匀采样和数据可用性有限的问题。所提出的MLK方法通过基于相关的补丁处理和基于主成分分析的互信息进行信息提取,优化了微管信号中缺失观测值的预测。实验结果证明,所提出的基于MLK的超分辨率方法优于非线性插值和压缩感知方法。

结论

这项工作旨在解决由于微管等生物信号的非均匀采样而导致的数据可用性有限以及数据/观测值丢失的问题。为此,使用基于EM的ML驱动卡尔曼估计(MLK)对随机微管信号进行统计建模被视为预测缺失微管观测值的基本框架。实验验证了所提出的超分辨率方法提供了卓越的整体性能,使用更少的样本能更好地估计微管信号,具有高信噪比、低误差,并且比其他方法能更好地估计微管参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/783f/6249719/13fb1993760f/12918_2018_631_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验