Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720.
The Francis Crick Institute, London NW1 1AT, United Kingdom.
Proc Natl Acad Sci U S A. 2022 Jan 11;119(2). doi: 10.1073/pnas.2114994119.
Microtubules (MTs) are polymers of αβ-tubulin heterodimers that stochastically switch between growth and shrinkage phases. This dynamic instability is critically important for MT function. It is believed that GTP hydrolysis within the MT lattice is accompanied by destabilizing conformational changes and that MT stability depends on a transiently existing GTP cap at the growing MT end. Here, we use cryo-electron microscopy and total internal reflection fluorescence microscopy of GTP hydrolysis-deficient MTs assembled from mutant recombinant human tubulin to investigate the structure of a GTP-bound MT lattice. We find that the GTP-MT lattice of two mutants in which the catalytically active glutamate in α-tubulin was substituted by inactive amino acids (E254A and E254N) is remarkably plastic. Undecorated E254A and E254N MTs with 13 protofilaments both have an expanded lattice but display opposite protofilament twists, making these lattices distinct from the compacted lattice of wild-type GDP-MTs. End-binding proteins of the EB family have the ability to compact both mutant GTP lattices and to stabilize a negative twist, suggesting that they promote this transition also in the GTP cap of wild-type MTs, thereby contributing to the maturation of the MT structure. We also find that the MT seam appears to be stabilized in mutant GTP-MTs and destabilized in GDP-MTs, supporting the proposal that the seam plays an important role in MT stability. Together, these structures of catalytically inactive MTs add mechanistic insight into the GTP state of MTs, the stability of the GTP- and GDP-bound lattice, and our overall understanding of MT dynamic instability.
微管(MTs)是由αβ-微管蛋白异二聚体组成的聚合物,可在生长和收缩阶段之间随机切换。这种动态不稳定性对 MT 功能至关重要。据信,MT 晶格内的 GTP 水解伴随着失稳的构象变化,而 MT 的稳定性取决于生长 MT 端的短暂存在的 GTP 帽。在这里,我们使用突变重组人微管组装的缺乏 GTP 水解的 MT 的低温电子显微镜和全内反射荧光显微镜来研究 GTP 结合的 MT 晶格的结构。我们发现,两种突变体的 GTP-MT 晶格具有显著的塑性,在这两种突变体中,α-微管中的催化活性谷氨酸被非活性氨基酸(E254A 和 E254N)取代。未修饰的 E254A 和 E254N MTs 具有 13 个原纤维,两者都具有扩展的晶格,但显示出相反的原纤维扭曲,使这些晶格与野生型 GDP-MTs 的致密晶格不同。EB 家族的末端结合蛋白具有使两种突变体的 GTP 晶格致密化和稳定负扭转的能力,这表明它们也促进了野生型 MTs 的 GTP 帽的这种转变,从而有助于 MT 结构的成熟。我们还发现,MT 缝似乎在突变体 GTP-MTs 中稳定,在 GDP-MTs 中不稳定,这支持了缝在 MT 稳定性中起重要作用的观点。总之,这些无催化活性 MT 的结构增加了对 MT 状态、GTP 和 GDP 结合晶格的稳定性以及我们对 MT 动态不稳定性的整体理解的机制见解。
Proc Natl Acad Sci U S A. 2022-1-11
Nat Commun. 2025-3-10
Proc Natl Acad Sci U S A. 2018-6-18
Curr Biol. 2012-8-16
J Cell Biol. 2017-9-4
J Cell Biol. 2010-10-25
Cytoskeleton (Hoboken). 2025-7-12
Proc Natl Acad Sci U S A. 2025-6-3
Nat Commun. 2025-3-10
Nat Commun. 2025-2-18
Biochem Soc Trans. 2025-2-5
Mol Biol Cell. 2025-4-1
Methods Mol Biol. 2020
J Struct Biol. 2020-1-1
Curr Biol. 2019-6-20
Nat Methods. 2019-5-13
Essays Biochem. 2018-12-7