文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过对无催化活性微管的低温电子显微镜观察,可视化了 GTP 帽的结构转变。

Structural transitions in the GTP cap visualized by cryo-electron microscopy of catalytically inactive microtubules.

机构信息

Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720.

The Francis Crick Institute, London NW1 1AT, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2022 Jan 11;119(2). doi: 10.1073/pnas.2114994119.


DOI:10.1073/pnas.2114994119
PMID:34996871
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8764682/
Abstract

Microtubules (MTs) are polymers of αβ-tubulin heterodimers that stochastically switch between growth and shrinkage phases. This dynamic instability is critically important for MT function. It is believed that GTP hydrolysis within the MT lattice is accompanied by destabilizing conformational changes and that MT stability depends on a transiently existing GTP cap at the growing MT end. Here, we use cryo-electron microscopy and total internal reflection fluorescence microscopy of GTP hydrolysis-deficient MTs assembled from mutant recombinant human tubulin to investigate the structure of a GTP-bound MT lattice. We find that the GTP-MT lattice of two mutants in which the catalytically active glutamate in α-tubulin was substituted by inactive amino acids (E254A and E254N) is remarkably plastic. Undecorated E254A and E254N MTs with 13 protofilaments both have an expanded lattice but display opposite protofilament twists, making these lattices distinct from the compacted lattice of wild-type GDP-MTs. End-binding proteins of the EB family have the ability to compact both mutant GTP lattices and to stabilize a negative twist, suggesting that they promote this transition also in the GTP cap of wild-type MTs, thereby contributing to the maturation of the MT structure. We also find that the MT seam appears to be stabilized in mutant GTP-MTs and destabilized in GDP-MTs, supporting the proposal that the seam plays an important role in MT stability. Together, these structures of catalytically inactive MTs add mechanistic insight into the GTP state of MTs, the stability of the GTP- and GDP-bound lattice, and our overall understanding of MT dynamic instability.

摘要

微管(MTs)是由αβ-微管蛋白异二聚体组成的聚合物,可在生长和收缩阶段之间随机切换。这种动态不稳定性对 MT 功能至关重要。据信,MT 晶格内的 GTP 水解伴随着失稳的构象变化,而 MT 的稳定性取决于生长 MT 端的短暂存在的 GTP 帽。在这里,我们使用突变重组人微管组装的缺乏 GTP 水解的 MT 的低温电子显微镜和全内反射荧光显微镜来研究 GTP 结合的 MT 晶格的结构。我们发现,两种突变体的 GTP-MT 晶格具有显著的塑性,在这两种突变体中,α-微管中的催化活性谷氨酸被非活性氨基酸(E254A 和 E254N)取代。未修饰的 E254A 和 E254N MTs 具有 13 个原纤维,两者都具有扩展的晶格,但显示出相反的原纤维扭曲,使这些晶格与野生型 GDP-MTs 的致密晶格不同。EB 家族的末端结合蛋白具有使两种突变体的 GTP 晶格致密化和稳定负扭转的能力,这表明它们也促进了野生型 MTs 的 GTP 帽的这种转变,从而有助于 MT 结构的成熟。我们还发现,MT 缝似乎在突变体 GTP-MTs 中稳定,在 GDP-MTs 中不稳定,这支持了缝在 MT 稳定性中起重要作用的观点。总之,这些无催化活性 MT 的结构增加了对 MT 状态、GTP 和 GDP 结合晶格的稳定性以及我们对 MT 动态不稳定性的整体理解的机制见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/447c/8764682/9407f65bfa26/pnas.2114994119fig06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/447c/8764682/5dc0be494bfe/pnas.2114994119fig01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/447c/8764682/5aa2032371b2/pnas.2114994119fig02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/447c/8764682/8417baf70816/pnas.2114994119fig03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/447c/8764682/5959d485c920/pnas.2114994119fig04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/447c/8764682/b43896282e9b/pnas.2114994119fig05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/447c/8764682/9407f65bfa26/pnas.2114994119fig06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/447c/8764682/5dc0be494bfe/pnas.2114994119fig01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/447c/8764682/5aa2032371b2/pnas.2114994119fig02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/447c/8764682/8417baf70816/pnas.2114994119fig03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/447c/8764682/5959d485c920/pnas.2114994119fig04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/447c/8764682/b43896282e9b/pnas.2114994119fig05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/447c/8764682/9407f65bfa26/pnas.2114994119fig06.jpg

相似文献

[1]
Structural transitions in the GTP cap visualized by cryo-electron microscopy of catalytically inactive microtubules.

Proc Natl Acad Sci U S A. 2022-1-11

[2]
Hydrolysis-deficient mosaic microtubules as faithful mimics of the GTP cap.

Nat Commun. 2025-3-10

[3]
The structure of microtubule ends during the elongation and shortening phases of dynamic instability examined by negative-stain electron microscopy.

J Cell Sci. 1990-8

[4]
Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins.

Cell. 2015-8-13

[5]
Separating the effects of nucleotide and EB binding on microtubule structure.

Proc Natl Acad Sci U S A. 2018-6-18

[6]
Structural model for differential cap maturation at growing microtubule ends.

Elife. 2020-3-10

[7]
Conformational changes in tubulin in GMPCPP and GDP-taxol microtubules observed by cryoelectron microscopy.

J Cell Biol. 2012-7-30

[8]
Estimating the microtubule GTP cap size in vivo.

Curr Biol. 2012-8-16

[9]
Structural differences between yeast and mammalian microtubules revealed by cryo-EM.

J Cell Biol. 2017-9-4

[10]
Template-free 13-protofilament microtubule-MAP assembly visualized at 8 A resolution.

J Cell Biol. 2010-10-25

引用本文的文献

[1]
MATCAP1 preferentially binds an expanded tubulin conformation to generate detyrosinated and ΔC2 α-tubulin.

bioRxiv. 2025-8-18

[2]
Purification, Fluorescent Labeling, and Detyrosination of Mammalian Cell Tubulin for Biochemical Assays.

Cytoskeleton (Hoboken). 2025-7-12

[3]
Conformational flexibility of tubulin dimers regulates the transitions of microtubule dynamic instability.

bioRxiv. 2025-7-2

[4]
Microtubules in Martini: Parameterizing a heterogeneous elastic-network towards a mechanically accurate microtubule.

PNAS Nexus. 2025-6-21

[5]
Microtubule dynamics are defined by conformations and stability of clustered protofilaments.

Proc Natl Acad Sci U S A. 2025-6-3

[6]
Hydrolysis-deficient mosaic microtubules as faithful mimics of the GTP cap.

Nat Commun. 2025-3-10

[7]
Doublecortin restricts neuronal branching by regulating tubulin polyglutamylation.

Nat Commun. 2025-2-18

[8]
Structural switching of tubulin in the microtubule lattice.

Biochem Soc Trans. 2025-2-5

[9]
β3 accelerates microtubule plus end maturation through a divergent lateral interface.

Mol Biol Cell. 2025-4-1

[10]
Structure of blood cell-specific tubulin and demonstration of dimer spacing compaction in a single protofilament.

J Biol Chem. 2025-2

本文引用的文献

[1]
Microtubule Simulations Provide Insight into the Molecular Mechanism Underlying Dynamic Instability.

Biophys J. 2020-6-16

[2]
Structural model for differential cap maturation at growing microtubule ends.

Elife. 2020-3-10

[3]
The speed of GTP hydrolysis determines GTP cap size and controls microtubule stability.

Elife. 2020-2-13

[4]
Ultrastructural Analysis of Microtubule Ends.

Methods Mol Biol. 2020

[5]
A microtubule RELION-based pipeline for cryo-EM image processing.

J Struct Biol. 2020-1-1

[6]
Self-Organization of Minimal Anaphase Spindle Midzone Bundles.

Curr Biol. 2019-6-20

[7]
Software tools for automated transmission electron microscopy.

Nat Methods. 2019-5-13

[8]
New tools for automated high-resolution cryo-EM structure determination in RELION-3.

Elife. 2018-11-9

[9]
Microtubule structure by cryo-EM: snapshots of dynamic instability.

Essays Biochem. 2018-12-7

[10]
Spatial positioning of EB family proteins at microtubule tips involves distinct nucleotide-dependent binding properties.

J Cell Sci. 2018-10-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索