Programa de Pós-graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF 70910-900, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil.
Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Porto Reports, Brasília, DF, Brazil.
Biochim Biophys Acta Biomembr. 2019 Jan;1861(1):178-190. doi: 10.1016/j.bbamem.2018.08.001. Epub 2018 Aug 10.
Antimicrobial peptides (AMPs) are promising candidates for the development of future antibiotics. In an attempt to increase the efficacy of therapeutic AMPs, computer-based design methods appear as a reliable strategy. In this study, we evaluated the antimicrobial efficiency and mechanism of action of a novel designed AMP named PaDBS1R1, previously designed by means of the Joker algorithm, using a fragment of the ribosomal protein L39E from the archaeon Pyrobaculum aerophilum as a template. PaDBS1R1 displayed low micromolar broad-spectrum antimicrobial activity against Gram-negative (MIC of 1.5 μM) and Gram-positive (MIC of 3 μM) bacteria, including carbapenem-resistant Klebsiella pneumoniae (MIC of 6.25 μM) and methicillin-resistant Staphylococcus aureus (MIC of 12.5 μM), without cytotoxicity towards HEK-293 cells. In addition, membrane permeabilization and depolarization assays, combined with time-kill studies and FEG-SEM imaging, indicated a fast membrane permeation and further leakage of intracellular content. Biophysical studies with lipid vesicles show a preference of PaDBS1R1 for Gram-negative bacteria-like membranes. We investigated the three-dimensional structure of PaDBS1R1 by CD and NMR analyses. Our results suggest that PaDBS1R1 adopts an amphipathic α-helix upon interacting with hydrophobic environments, after an initial electrostatic interaction with negative charges, suggesting a membrane lytic effect. This study reveals that PaDBS1R1 has potential application in antibiotic therapy.
抗菌肽 (AMPs) 是开发未来抗生素的有前途的候选者。为了提高治疗性 AMP 的功效,基于计算机的设计方法似乎是一种可靠的策略。在这项研究中,我们评估了先前通过 Joker 算法设计的新型 AMP PaDBS1R1 的抗菌效率和作用机制,该 AMP 的模板来自古生菌 Pyrobaculum aerophilum 的核糖体蛋白 L39E 的片段。PaDBS1R1 对革兰氏阴性(MIC 为 1.5 μM)和革兰氏阳性(MIC 为 3 μM)细菌均具有低微摩尔广谱抗菌活性,包括耐碳青霉烯类的肺炎克雷伯菌(MIC 为 6.25 μM)和耐甲氧西林的金黄色葡萄球菌(MIC 为 12.5 μM),对 HEK-293 细胞无细胞毒性。此外,膜通透性和去极化测定,结合时间杀伤研究和 FEG-SEM 成像,表明其具有快速的膜渗透和进一步的细胞内内容物泄漏。与脂质体的生物物理研究表明 PaDBS1R1 优先与革兰氏阴性菌样膜相互作用。我们通过 CD 和 NMR 分析研究了 PaDBS1R1 的三维结构。我们的结果表明,PaDBS1R1 在与疏水环境相互作用时采用两亲性α-螺旋,在与负电荷发生初始静电相互作用后,表明其具有膜裂解作用。这项研究表明 PaDBS1R1 具有在抗生素治疗中的应用潜力。