Division of Infectious Disease, Department of Internal Medicine, Tungs' Taichung Metroharbor Hospital, Taichung, Taiwan.
Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.
J Bacteriol. 2022 Dec 20;204(12):e0031222. doi: 10.1128/jb.00312-22. Epub 2022 Nov 15.
Multidrug-resistant (MDR) bacteria lead to considerable morbidity and mortality, threatening public health worldwide. In particular, infections of methicillin-resistant Staphylococcus aureus (MRSA) in hospital and community settings are becoming a serious health problem. Antimicrobial peptides (AMPs) are considered novel therapeutic targets against MDR bacteria. However, salt sensitivity reduces the bactericidal potency of AMPs, posing a major obstacle for their development as antibiotics. Thus, the design and development of salt-insensitive peptides with potent antibacterial activity is imperative. Here, we employed biochemical and biophysical examinations coupled with molecular modeling to systematically investigate the structure-function relationship of a novel salt-insensitive AMP, RR14. The secondary structure of RR14 was characterized as an apparent α-helix, a structure that confers strong membrane-permeabilizing ability targeting bacterial-mimetic membranes. Additionally, the bioactive structure of RR14 was determined in complex with dodecylphosphocholine (DPC) micelles, where it possesses a central α-helical segment comprising residues R4 to K13 (R4-K13). RR14 was observed to orient itself into the DPC micelle with its N terminus and the α-helical segment (I5-R10) buried inside the micelles, which is essential for membrane permeabilization and bactericidal activity. Moreover, the specific and featured arrangement of positively charged residues of RR14 on its amphipathic helical conformation has great potential to render its strong salt resistance ability. Our study explored the structure-function relationship of RR14, explaining its possible mode of action against MRSA and other microbes. The insights obtained are of great applicability for the development of new antibacterial agents. Many antimicrobial peptides have been observed to become inactive in the presence of high salt concentrations. To further develop new and novel AMPs with potent bactericidal activity and salt insensitivity, understanding the structural basis for salt resistance is important. Here, we employed biochemical and biophysical examinations to systematically investigate the structure-function relationship of a novel salt-insensitive AMP, RR14. RR14 was observed to orient itself into DPC micelles with the N terminus and the α-helical segment (I5-R10) buried inside the micelles, which is essential for membrane permeabilization and bactericidal activity. Moreover, the specific and featured arrangement of cationic residues of RR14 on its amphipathic helical conformation renders its strong salt resistance ability. The insights obtained are of great applicability for developing new antibacterial agents.
耐多药 (MDR) 细菌导致相当大的发病率和死亡率,威胁着全球公共健康。特别是耐甲氧西林金黄色葡萄球菌 (MRSA) 在医院和社区环境中的感染正在成为一个严重的健康问题。抗菌肽 (AMP) 被认为是针对 MDR 细菌的新型治疗靶点。然而,盐敏感性降低了 AMP 的杀菌效力,这成为其作为抗生素开发的主要障碍。因此,设计和开发具有强大抗菌活性的耐盐肽势在必行。在这里,我们采用生化和生物物理方法结合分子建模,系统研究了一种新型耐盐抗菌肽 RR14 的结构-功能关系。RR14 的二级结构被表征为明显的α-螺旋,这种结构赋予了针对细菌模拟膜的强大膜透性。此外,还确定了 RR14 与十二烷基磷酸胆碱 (DPC) 胶束结合的生物活性结构,其中它具有包含残基 R4 到 K13 的中央α-螺旋片段(R4-K13)。RR14 被观察到以其 N 端和α-螺旋片段 (I5-R10) 嵌入胶束内部的方式定向进入 DPC 胶束,这对于膜透化和杀菌活性是必不可少的。此外,RR14 上带正电荷的残基在其两亲性螺旋构象上的特定和特征排列具有使其具有强大耐盐能力的巨大潜力。我们的研究探讨了 RR14 的结构-功能关系,解释了其可能的作用机制针对 MRSA 和其他微生物。获得的见解对于开发新的抗菌剂具有重要的适用性。许多抗菌肽在存在高盐浓度时会变得失活。为了进一步开发具有强大杀菌活性和耐盐性的新型 AMP,了解耐盐性的结构基础很重要。在这里,我们采用生化和生物物理方法对一种新型耐盐抗菌肽 RR14 的结构-功能关系进行了系统研究。观察到 RR14 以其 N 端和α-螺旋片段 (I5-R10) 嵌入胶束内部的方式定向进入 DPC 胶束,这对于膜透化和杀菌活性是必不可少的。此外,RR14 上带正电荷的残基在其两亲性螺旋构象上的特定和特征排列赋予了其强大的耐盐能力。获得的见解对于开发新的抗菌剂具有重要的适用性。
Biochim Biophys Acta Biomembr. 2018-8-10
Biopolymers. 2016-5
Antimicrob Agents Chemother. 2014-7
J Phys Chem B. 2022-7-21
Nucleic Acids Res. 2022-7-5
Antibiotics (Basel). 2021-9-10
Antibiotics (Basel). 2020-1-13
Biochim Biophys Acta Biomembr. 2019-5-5
Can J Infect Dis Med Microbiol. 2019-2-6