特定染色体拷贝数改变之间的遗传相互作用决定了复杂的非整倍体模式。

Genetic interactions between specific chromosome copy number alterations dictate complex aneuploidy patterns.

机构信息

Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna 1030, Austria.

出版信息

Genes Dev. 2018 Dec 1;32(23-24):1485-1498. doi: 10.1101/gad.319400.118. Epub 2018 Nov 21.

Abstract

Cells that contain an abnormal number of chromosomes are called aneuploid. High rates of aneuploidy in cancer are correlated with an increased frequency of chromosome missegregation, termed chromosomal instability (CIN). Both high levels of aneuploidy and CIN are associated with cancers that are resistant to treatment. Although aneuploidy and CIN are typically detrimental to cell growth, they can aid in adaptation to selective pressures. Here, we induced extremely high rates of chromosome missegregation in yeast to determine how cells adapt to CIN over time. We found that adaptation to CIN occurs initially through many different individual chromosomal aneuploidies. Interestingly, the adapted yeast strains acquire complex karyotypes with specific subsets of the beneficial aneuploid chromosomes. These complex aneuploidy patterns are governed by synthetic genetic interactions between individual chromosomal abnormalities, which we refer to as chromosome copy number interactions (CCNIs). Given enough time, distinct karyotypic patterns in separate yeast populations converge on a refined complex aneuploid state. Surprisingly, some chromosomal aneuploidies that provided an advantage early on in adaptation are eventually lost due to negative CCNIs with even more beneficial aneuploid chromosome combinations. Together, our results show how cells adapt by obtaining specific complex aneuploid karyotypes in the presence of CIN.

摘要

含有异常数量染色体的细胞称为非整倍体。癌症中非整倍体的高发生率与染色体错误分离的频率增加有关,称为染色体不稳定性(CIN)。高水平的非整倍体和 CIN 都与对治疗有抵抗力的癌症有关。尽管非整倍体和 CIN 通常对细胞生长不利,但它们可以帮助适应选择压力。在这里,我们在酵母中诱导了极高水平的染色体错误分离,以确定细胞如何随时间适应 CIN。我们发现,最初通过许多不同的个体染色体非整倍体来适应 CIN。有趣的是,适应的酵母菌株获得了具有特定有益非整倍体染色体子集的复杂核型。这些复杂的非整倍体模式受个体染色体异常之间的合成遗传相互作用的控制,我们称之为染色体拷贝数相互作用(CCNIs)。有足够的时间,在不同的酵母群体中,不同的核型模式会收敛到一个精炼的复杂非整倍体状态。令人惊讶的是,一些在适应早期提供优势的染色体非整倍体由于与更有益的非整倍体染色体组合的负 CCNIs 而最终丢失。总之,我们的结果表明,细胞如何在 CIN 存在的情况下通过获得特定的复杂非整倍体核型来适应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ee/6295164/feed17334bff/1485f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索