Suppr超能文献

CRISPR/Cas9 和糖组学工具在糖生物学中的应用。

CRISPR/Cas9 and glycomics tools for glycobiology.

机构信息

Department of Biochemistry and Molecular Biology, Athens, Georgia 30602; Center for Tropical and Emerging Global Diseases, Athens, Georgia 30602.

Department of Biochemistry and Molecular Biology, Athens, Georgia 30602.

出版信息

J Biol Chem. 2019 Jan 25;294(4):1104-1125. doi: 10.1074/jbc.RA118.006072. Epub 2018 Nov 21.

Abstract

Infection with the protozoan parasite is a major health risk owing to birth defects, its chronic nature, ability to reactivate to cause blindness and encephalitis, and high prevalence in human populations. Unlike most eukaryotes, propagates in intracellular parasitophorous vacuoles, but like nearly all other eukaryotes, glycosylates many cellular proteins and lipids and assembles polysaccharides. glycans resemble those of other eukaryotes, but species-specific variations have prohibited deeper investigations into their roles in parasite biology and virulence. The genome encodes a suite of likely glycogenes expected to assemble -glycans, -glycans, a -glycan, GPI-anchors, and polysaccharides, along with their precursors and membrane transporters. To investigate the roles of specific glycans in , here we coupled genetic and glycomics approaches to map the connections between 67 glycogenes, their enzyme products, the glycans to which they contribute, and cellular functions. We applied a double-CRISPR/Cas9 strategy, in which two guide RNAs promote replacement of a candidate gene with a resistance gene; adapted MS-based glycomics workflows to test for effects on glycan formation; and infected fibroblast monolayers to assess cellular effects. By editing 17 glycogenes, we discovered novel Glc-Man-GlcNAc-type -glycans, a novel HexNAc-GalNAc-mucin-type -glycan, and Tn-antigen; identified the glycosyltransferases for assembling novel nuclear -Fuc-type and cell surface Glc-Fuc-type -glycans; and showed that they are important for growth. The guide sequences, editing constructs, and mutant strains are freely available to researchers to investigate the roles of glycans in their favorite biological processes.

摘要

疟原虫感染是一个主要的健康风险,因为它会导致出生缺陷、慢性性质、能够重新激活导致失明和脑炎,以及在人类群体中的高流行率。与大多数真核生物不同,疟原虫在细胞内寄生空泡中繁殖,但与几乎所有其他真核生物一样,疟原虫糖基化许多细胞蛋白和脂质,并组装多糖。疟原虫糖链与其他真核生物相似,但种特异性变异阻止了对其在寄生虫生物学和毒力中的作用的更深入研究。疟原虫基因组编码了一套可能的糖基因,预计这些基因将组装 - 聚糖、- 聚糖、- 聚糖、GPI-锚定物和多糖,以及它们的前体和膜转运蛋白。为了研究特定糖链在疟原虫中的作用,我们在这里结合了遗传和糖组学方法,绘制了 67 个糖基因与其酶产物、它们所贡献的聚糖以及细胞功能之间的联系图。我们应用了双 CRISPR/Cas9 策略,其中两个向导 RNA 促进候选基因被抗性基因取代;适应了基于 MS 的糖组学工作流程来测试对聚糖形成的影响;并感染成纤维细胞单层以评估细胞效应。通过编辑 17 个糖基因,我们发现了新型 Glc-Man-GlcNAc 型 - 聚糖、新型 HexNAc-GalNAc-粘蛋白型 - 聚糖和 Tn 抗原;确定了组装新型核 -Fuc 型和细胞表面 Glc-Fuc 型 - 聚糖的糖基转移酶;并表明它们对疟原虫的生长很重要。指导序列、编辑构建体和突变株可供研究人员免费使用,以研究糖链在他们喜爱的生物过程中的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验