Suppr超能文献

糖酵解对于刚地弓形虫的最佳无性生长和成熟组织囊形成很重要。

Glycolysis is important for optimal asexual growth and formation of mature tissue cysts by Toxoplasma gondii.

机构信息

Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India.

Department of Metabolomics, Kadmon Corporation, New York, USA.

出版信息

Int J Parasitol. 2018 Oct;48(12):955-968. doi: 10.1016/j.ijpara.2018.05.013. Epub 2018 Aug 31.

Abstract

Toxoplasma gondii can grow and replicate using either glucose or glutamine as the major carbon source. Here, we have studied the essentiality of glycolysis in the tachyzoite and bradyzoite stages of T. gondii, using transgenic parasites that lack a functional hexokinase gene (Δhk) in RH (Type-1) and Prugniaud (Type-II) strain parasites. Tachyzoite stage Δhk parasites exhibit a fitness defect similar to that reported previously for the major glucose transporter mutant, and remain virulent in mice. However, although Prugniaud strain Δhk tachyzoites were capable of transforming into bradyzoites in vitro, they were severely compromised in their ability to make mature bradyzoite cysts in the brain tissue of mice. Isotopic labelling studies reveal that glucose-deprived tacyzoites utilise glutamine to replenish glycolytic and pentose phosphate pathway intermediates via gluconeogenesis. Interestingly, while glutamine-deprived intracellular Δhk tachyzoites continued to replicate, extracellular parasites were unable to efficiently invade host cells. Further, studies on mutant tachyzoites lacking a functional phosphoenolpyruvate carboxykinase (Δpepck1) revealed that glutaminolysis is the sole source of gluconeogenic flux in glucose-deprived parasites. In addition, glutaminolysis is essential for sustaining oxidative phosphorylation in Δhk parasites, while wild type (wt) and Δpepck1 parasites can obtain ATP from either glycolysis or oxidative phosphorylation. This study provides insights into the role of nutrient metabolism during asexual propagation and development of T. gondii, and validates the versatile nature of central carbon and energy metabolism in this parasite.

摘要

刚地弓形虫可以利用葡萄糖或谷氨酰胺作为主要碳源进行生长和复制。在这里,我们使用缺乏功能性己糖激酶基因(Δhk)的转基因寄生虫研究了RH(I 型)和普鲁格纳尤(II 型)株寄生虫的速殖子和缓殖子阶段的糖酵解的必要性。Δhk 速殖子阶段寄生虫表现出与先前报道的主要葡萄糖转运体突变体相似的适应性缺陷,并且在小鼠中仍具有毒力。然而,尽管普鲁格纳尤株Δhk 速殖子能够在体外转化为缓殖子,但它们在使成熟缓殖子包囊在小鼠脑组织中形成的能力方面受到严重损害。同位素标记研究表明,葡萄糖剥夺的速殖子利用谷氨酰胺通过糖异生来补充糖酵解和戊糖磷酸途径中间产物。有趣的是,虽然谷氨酰胺剥夺的细胞内Δhk 速殖子继续复制,但细胞外寄生虫无法有效地入侵宿主细胞。此外,对缺乏功能性磷酸烯醇丙酮酸羧激酶(Δpepck1)的突变体速殖子的研究表明,在葡萄糖剥夺的寄生虫中,谷氨酰胺分解是糖异生通量的唯一来源。此外,谷氨酰胺分解对于维持Δhk 寄生虫的氧化磷酸化至关重要,而野生型(wt)和Δpepck1 寄生虫可以从糖酵解或氧化磷酸化中获得 ATP。这项研究提供了对刚地弓形虫无性繁殖和发育过程中营养代谢作用的深入了解,并验证了该寄生虫中中心碳和能量代谢的多功能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验