Suppr超能文献

PGR5 依赖性循环电子流在供体和受体侧波动光下保护光系统 I。

PGR5-Dependent Cyclic Electron Flow Protects Photosystem I under Fluctuating Light at Donor and Acceptor Sides.

机构信息

Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502 Japan.

Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502 Japan

出版信息

Plant Physiol. 2019 Feb;179(2):588-600. doi: 10.1104/pp.18.01343. Epub 2018 Nov 21.

Abstract

In response to a sudden increase in light intensity, plants must cope with absorbed excess photon energy to protect photosystems from photodamage. Under fluctuating light, PSI is severely photodamaged in the Arabidopsis () () mutant defective in the main pathway of PSI cyclic electron transport (CET). Here, we aimed to determine how PSI is protected by two proposed regulatory roles of CET via transthylakoid ΔpH formation: (1) reservation of electron sink capacity by adjusting the ATP/NADPH production ratio (acceptor-side regulation) and (2) down-regulation of the cytochrome complex activity called photosynthetic control for slowing down the electron flow toward PSI (donor-side regulation). We artificially enhanced donor- and acceptor-side regulation in the wild-type and backgrounds by introducing the mutation conferring the hypersensitivity of the cytochrome complex to luminal acidification and moss flavodiiron protein genes, respectively. Enhanced photosynthetic control partially alleviated PSI photodamage in the mutant background but restricted linear electron transport under constant high light, suggesting that the strength of photosynthetic control should be optimized. Flavodiiron protein-dependent oxygen photoreduction formed a large electron sink and alleviated PSI photoinhibition, accompanied by the induction of photosynthetic control. Thus, donor-side regulation is essential for PSI photoprotection but acceptor-side regulation also is important to rapidly induce donor-side regulation. In angiosperms, PGR5-dependent CET is required for both functions.

摘要

针对光强的突然增加,植物必须应对吸收的多余光子能量,以保护光系统免受光破坏。在波动的光下,PSI 在拟南芥 () () 突变体中严重光破坏,该突变体在PSI 循环电子传递(CET)的主要途径中存在缺陷。在这里,我们旨在确定 CET 通过跨类囊体 ΔpH 形成的两个拟议的调节作用如何保护 PSI:(1)通过调整 ATP/NADPH 产生比(受体侧调节)来保留电子汇容量,以及(2)下调称为光合控制的细胞色素复合物活性以减缓电子流向 PSI(供体侧调节)。我们通过分别引入赋予细胞色素 复合物对腔酸化敏感的突变和苔藓黄素铁蛋白基因,在野生型和 背景中人工增强了供体侧和受体侧调节。增强的光合控制部分缓解了 突变体背景中的 PSI 光破坏,但限制了恒定高光下的线性电子传递,表明光合控制的强度应进行优化。黄素铁蛋白依赖性氧光还原形成了一个大的电子汇,并缓解了 PSI 光抑制,同时诱导了光合控制。因此,供体侧调节对于 PSI 光保护至关重要,但受体侧调节对于快速诱导供体侧调节也很重要。在被子植物中,PGR5 依赖性 CET 对于这两个功能都是必需的。

相似文献

1
PGR5-Dependent Cyclic Electron Flow Protects Photosystem I under Fluctuating Light at Donor and Acceptor Sides.
Plant Physiol. 2019 Feb;179(2):588-600. doi: 10.1104/pp.18.01343. Epub 2018 Nov 21.
2
Artificial remodelling of alternative electron flow by flavodiiron proteins in Arabidopsis.
Nat Plants. 2016 Feb 22;2:16012. doi: 10.1038/nplants.2016.12.
4
Flavodiiron Protein Substitutes for Cyclic Electron Flow without Competing CO Assimilation in Rice.
Plant Physiol. 2018 Feb;176(2):1509-1518. doi: 10.1104/pp.17.01335. Epub 2017 Dec 14.
5
Distinct contribution of two cyclic electron transport pathways to P700 oxidation.
Plant Physiol. 2023 May 2;192(1):326-341. doi: 10.1093/plphys/kiac557.
6
Cyclic Electron Transport around PSI Contributes to Photosynthetic Induction with Thioredoxin .
Plant Physiol. 2020 Nov;184(3):1291-1302. doi: 10.1104/pp.20.00741. Epub 2020 Sep 11.
7
Contribution of NDH-dependent cyclic electron transport around photosystem I to the generation of proton motive force in the weak mutant allele of pgr5.
Biochim Biophys Acta Bioenerg. 2019 May 1;1860(5):369-374. doi: 10.1016/j.bbabio.2019.03.003. Epub 2019 Mar 13.
8
PGR5 and NDH-1 systems do not function as protective electron acceptors but mitigate the consequences of PSI inhibition.
Biochim Biophys Acta Bioenerg. 2020 Mar 1;1861(3):148154. doi: 10.1016/j.bbabio.2020.148154. Epub 2020 Jan 11.
9
Contribution of Cyclic and Pseudo-cyclic Electron Transport to the Formation of Proton Motive Force in Chloroplasts.
Mol Plant. 2017 Jan 9;10(1):20-29. doi: 10.1016/j.molp.2016.08.004. Epub 2016 Aug 26.

引用本文的文献

1
Structure, regulation and assembly of the photosynthetic electron transport chain.
Nat Rev Mol Cell Biol. 2025 May 21. doi: 10.1038/s41580-025-00847-y.
2
Adaptive responses of plants to light stress: mechanisms of photoprotection and acclimation. A review.
Front Plant Sci. 2025 Mar 28;16:1550125. doi: 10.3389/fpls.2025.1550125. eCollection 2025.
5
Leaf structure and photosynthesis in under naturally fluctuating environments.
Photosynthetica. 2022 Mar 28;60(2):240-250. doi: 10.32615/ps.2022.012. eCollection 2022.
6
Genetic engineering of RuBisCO by multiplex CRISPR editing small subunits in rice.
Plant Biotechnol J. 2025 Mar;23(3):731-749. doi: 10.1111/pbi.14535. Epub 2024 Dec 4.
8
Cyclic electron flow compensates loss of PGDH3 and concomitant stromal NADH reduction.
Sci Rep. 2024 Nov 26;14(1):29274. doi: 10.1038/s41598-024-80836-x.
9
Strategies for adaptation to high light in plants.
aBIOTECH. 2024 May 13;5(3):381-393. doi: 10.1007/s42994-024-00164-6. eCollection 2024 Sep.
10
Photosynthesis: Genetic Strategies Adopted to Gain Higher Efficiency.
Int J Mol Sci. 2024 Aug 16;25(16):8933. doi: 10.3390/ijms25168933.

本文引用的文献

1
PROTON GRADIENT REGULATION 5 contributes to ferredoxin-dependent cyclic phosphorylation in ruptured chloroplasts.
Biochim Biophys Acta Bioenerg. 2018 Oct;1859(10):1173-1179. doi: 10.1016/j.bbabio.2018.07.011. Epub 2018 Jul 31.
2
Structure, mechanism, and regulation of the chloroplast ATP synthase.
Science. 2018 May 11;360(6389). doi: 10.1126/science.aat4318.
3
Flavodiiron Protein Substitutes for Cyclic Electron Flow without Competing CO Assimilation in Rice.
Plant Physiol. 2018 Feb;176(2):1509-1518. doi: 10.1104/pp.17.01335. Epub 2017 Dec 14.
4
Diversity and complexity of flavodiiron NO/O2 reductases.
FEMS Microbiol Lett. 2018 Feb 1;365(3). doi: 10.1093/femsle/fnx267.
6
Flavodiiron Proteins Promote Fast and Transient O Photoreduction in .
Plant Physiol. 2017 Jul;174(3):1825-1836. doi: 10.1104/pp.17.00421. Epub 2017 May 9.
7
Perfect chemomechanical coupling of FF-ATP synthase.
Proc Natl Acad Sci U S A. 2017 May 9;114(19):4960-4965. doi: 10.1073/pnas.1700801114. Epub 2017 Apr 25.
9
The Liverwort, , Drives Alternative Electron Flow Using a Flavodiiron Protein to Protect PSI.
Plant Physiol. 2017 Mar;173(3):1636-1647. doi: 10.1104/pp.16.01038. Epub 2017 Feb 2.
10
Flavodiiron proteins act as safety valve for electrons in Physcomitrella patens.
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12322-12327. doi: 10.1073/pnas.1606685113. Epub 2016 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验