Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502 Japan.
Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502 Japan
Plant Physiol. 2019 Feb;179(2):588-600. doi: 10.1104/pp.18.01343. Epub 2018 Nov 21.
In response to a sudden increase in light intensity, plants must cope with absorbed excess photon energy to protect photosystems from photodamage. Under fluctuating light, PSI is severely photodamaged in the Arabidopsis () () mutant defective in the main pathway of PSI cyclic electron transport (CET). Here, we aimed to determine how PSI is protected by two proposed regulatory roles of CET via transthylakoid ΔpH formation: (1) reservation of electron sink capacity by adjusting the ATP/NADPH production ratio (acceptor-side regulation) and (2) down-regulation of the cytochrome complex activity called photosynthetic control for slowing down the electron flow toward PSI (donor-side regulation). We artificially enhanced donor- and acceptor-side regulation in the wild-type and backgrounds by introducing the mutation conferring the hypersensitivity of the cytochrome complex to luminal acidification and moss flavodiiron protein genes, respectively. Enhanced photosynthetic control partially alleviated PSI photodamage in the mutant background but restricted linear electron transport under constant high light, suggesting that the strength of photosynthetic control should be optimized. Flavodiiron protein-dependent oxygen photoreduction formed a large electron sink and alleviated PSI photoinhibition, accompanied by the induction of photosynthetic control. Thus, donor-side regulation is essential for PSI photoprotection but acceptor-side regulation also is important to rapidly induce donor-side regulation. In angiosperms, PGR5-dependent CET is required for both functions.
针对光强的突然增加,植物必须应对吸收的多余光子能量,以保护光系统免受光破坏。在波动的光下,PSI 在拟南芥 () () 突变体中严重光破坏,该突变体在PSI 循环电子传递(CET)的主要途径中存在缺陷。在这里,我们旨在确定 CET 通过跨类囊体 ΔpH 形成的两个拟议的调节作用如何保护 PSI:(1)通过调整 ATP/NADPH 产生比(受体侧调节)来保留电子汇容量,以及(2)下调称为光合控制的细胞色素复合物活性以减缓电子流向 PSI(供体侧调节)。我们通过分别引入赋予细胞色素 复合物对腔酸化敏感的突变和苔藓黄素铁蛋白基因,在野生型和 背景中人工增强了供体侧和受体侧调节。增强的光合控制部分缓解了 突变体背景中的 PSI 光破坏,但限制了恒定高光下的线性电子传递,表明光合控制的强度应进行优化。黄素铁蛋白依赖性氧光还原形成了一个大的电子汇,并缓解了 PSI 光抑制,同时诱导了光合控制。因此,供体侧调节对于 PSI 光保护至关重要,但受体侧调节对于快速诱导供体侧调节也很重要。在被子植物中,PGR5 依赖性 CET 对于这两个功能都是必需的。