Suppr超能文献

循环电子流补偿了 PGDH3 的缺失和伴随的基质 NADH 还原。

Cyclic electron flow compensates loss of PGDH3 and concomitant stromal NADH reduction.

机构信息

Plant Biochemistry, LMU Munich, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany.

Centre of Photosynthetic and Biochemical Studies (CEFOBI-CONICET-UNR), S2002LRK, Rosario, Argentina.

出版信息

Sci Rep. 2024 Nov 26;14(1):29274. doi: 10.1038/s41598-024-80836-x.

Abstract

In nature plants constantly experience changes in light intensities. Low illumination limits photosynthesis and growth. However, also high light intensities are a threat to plants as the photosynthetic machinery gets damaged when the incoming energy surpasses the capacity of photochemistry. One limitation of photochemistry is the constant resupply of stromal electron (e) acceptors, mainly NADP. NADP is reduced at the acceptor-side of photosystem I. The resulting NADPH is utilized by the Calvin-Benson-Bassham cycle (CBBC) and the malate valve to ensure sufficient oxidized NADP ready to accept e from PSI. Lately, additional pathways, which function as stromal e sinks under abiotic stress conditions, were discovered. One such reaction in Arabidopsis thaliana is catalyzed by PHOSPHOGLYCERATE DEHYDROGENASE 3 (PGDH3), which diverts e from the CBBC into NADH. pgdh3 loss-of-function mutants exhibit elevated non-photochemical quenching (NPQ) and fluctuating light susceptibility. To optimize plant photosynthesis in challenging environments knowledge on PGDH3's metabolic integration is needed. We used the source of high NPQ in pgdh3 as a starting point. Our study reveals that increased NPQ originates from high cyclic electron flow (CEF). Interestingly, PGDH3 function seems very important when the CEF-generator PROTON GRADIENT REGULATION5 (PGR5) is lost. Consequently, pgr5pgdh3 double mutants are more sensitive to fluctuating light.

摘要

在自然界中,植物不断经历光照强度的变化。低光照会限制光合作用和生长。然而,高光强也对植物构成威胁,因为当入射能量超过光化学的能力时,光合作用机制会受到损伤。光化学的一个限制因素是基质电子(e)受体(主要是 NADP)的不断供应。NADP 在光系统 I 的受体侧被还原。产生的 NADPH 被卡尔文-本森-巴斯汉姆循环(CBBC)和苹果酸门利用,以确保有足够的氧化 NADP 随时准备从 PSI 接受 e。最近,发现了在非生物胁迫条件下作为基质 e 汇发挥作用的其他途径。在拟南芥中,有一种这样的反应是由 3-磷酸甘油醛脱氢酶 3(PGDH3)催化的,它将 e 从 CBBC 转移到 NADH 中。pgdh3 功能丧失突变体表现出升高的非光化学猝灭(NPQ)和波动光敏感性。为了在具有挑战性的环境中优化植物光合作用,需要了解 PGDH3 的代谢整合。我们使用 pgdh3 中高 NPQ 的来源作为起点。我们的研究表明,NPQ 的增加源于高循环电子流(CEF)。有趣的是,当 CEF 发生器质子梯度调节 5(PGR5)丧失时,PGDH3 的功能似乎非常重要。因此,pgr5pgdh3 双突变体对波动光更敏感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ef4/11589868/bef91cf81417/41598_2024_80836_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验