Suppr超能文献

黄素二铁蛋白在小立碗藓中作为电子的安全阀。

Flavodiiron proteins act as safety valve for electrons in Physcomitrella patens.

作者信息

Gerotto Caterina, Alboresi Alessandro, Meneghesso Andrea, Jokel Martina, Suorsa Marjaana, Aro Eva-Mari, Morosinotto Tomas

机构信息

Department of Biology, University of Padova, 35121 Padova, Italy.

Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland.

出版信息

Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12322-12327. doi: 10.1073/pnas.1606685113. Epub 2016 Oct 10.

Abstract

Photosynthetic organisms support cell metabolism by harvesting sunlight to fuel the photosynthetic electron transport. The flow of excitation energy and electrons in the photosynthetic apparatus needs to be continuously modulated to respond to dynamics of environmental conditions, and Flavodiiron (FLV) proteins are seminal components of this regulatory machinery in cyanobacteria. FLVs were lost during evolution by flowering plants, but are still present in nonvascular plants such as Physcomitrella patens We generated P. patens mutants depleted in FLV proteins, showing their function as an electron sink downstream of photosystem I for the first seconds after a change in light intensity. flv knock-out plants showed impaired growth and photosystem I photoinhibition when exposed to fluctuating light, demonstrating FLV's biological role as a safety valve from excess electrons on illumination changes. The lack of FLVs was partially compensated for by an increased cyclic electron transport, suggesting that in flowering plants, the FLV's role was taken by other alternative electron routes.

摘要

光合生物通过捕获阳光为光合电子传递提供能量来支持细胞代谢。光合装置中激发能和电子的流动需要不断调节以响应环境条件的变化,而黄素二铁(FLV)蛋白是蓝藻中这种调节机制的重要组成部分。FLV在开花植物的进化过程中丢失了,但仍存在于小立碗藓等非维管植物中。我们构建了FLV蛋白缺失的小立碗藓突变体,首次证明了它们在光强变化后的最初几秒内作为光系统I下游电子汇的功能。flv基因敲除植株在波动光下生长受损且光系统I发生光抑制,这表明FLV作为光照变化时防止过量电子的安全阀具有生物学作用。FLV的缺失部分地由增加的循环电子传递所补偿,这表明在开花植物中,FLV的作用由其他替代电子途径所取代。

相似文献

1
Flavodiiron proteins act as safety valve for electrons in Physcomitrella patens.
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12322-12327. doi: 10.1073/pnas.1606685113. Epub 2016 Oct 10.
2
Role of cyclic and pseudo-cyclic electron transport in response to dynamic light changes in Physcomitrella patens.
Plant Cell Environ. 2019 May;42(5):1590-1602. doi: 10.1111/pce.13493. Epub 2018 Dec 18.
5
Balancing protection and efficiency in the regulation of photosynthetic electron transport across plant evolution.
New Phytol. 2019 Jan;221(1):105-109. doi: 10.1111/nph.15372. Epub 2018 Aug 7.
6
Light intensity activation of alternative electron transport mechanisms in the moss Physcomitrium patens.
Plant Physiol Biochem. 2025 Jul;224:109904. doi: 10.1016/j.plaphy.2025.109904. Epub 2025 Apr 16.
7
Regulation of electron transport is essential for photosystem I stability and plant growth.
New Phytol. 2020 Nov;228(4):1316-1326. doi: 10.1111/nph.16643. Epub 2020 Jun 18.
8
Artificial remodelling of alternative electron flow by flavodiiron proteins in Arabidopsis.
Nat Plants. 2016 Feb 22;2:16012. doi: 10.1038/nplants.2016.12.
9
PGR5-Dependent Cyclic Electron Flow Protects Photosystem I under Fluctuating Light at Donor and Acceptor Sides.
Plant Physiol. 2019 Feb;179(2):588-600. doi: 10.1104/pp.18.01343. Epub 2018 Nov 21.
10
Flavodiiron Protein Substitutes for Cyclic Electron Flow without Competing CO Assimilation in Rice.
Plant Physiol. 2018 Feb;176(2):1509-1518. doi: 10.1104/pp.17.01335. Epub 2017 Dec 14.

引用本文的文献

2
Adaptive responses of plants to light stress: mechanisms of photoprotection and acclimation. A review.
Front Plant Sci. 2025 Mar 28;16:1550125. doi: 10.3389/fpls.2025.1550125. eCollection 2025.
4
Lighting the way: Compelling open questions in photosynthesis research.
Plant Cell. 2024 Oct 3;36(10):3914-3943. doi: 10.1093/plcell/koae203.
5
Alternative electron pathways of photosynthesis power green algal CO2 capture.
Plant Cell. 2024 Oct 3;36(10):4132-4142. doi: 10.1093/plcell/koae143.
7
Revealing the significance of chlorophyll b in the moss Physcomitrium patens by knocking out two functional chlorophyllide a oxygenase.
Photosynth Res. 2023 Dec;158(3):171-180. doi: 10.1007/s11120-023-01044-8. Epub 2023 Aug 31.
10
Restricting electron flow at cytochrome b6f when downstream electron acceptors are severely limited.
Plant Physiol. 2023 May 31;192(2):789-804. doi: 10.1093/plphys/kiad185.

本文引用的文献

2
Artificial remodelling of alternative electron flow by flavodiiron proteins in Arabidopsis.
Nat Plants. 2016 Feb 22;2:16012. doi: 10.1038/nplants.2016.12.
3
NDH-1 and NDH-2 Plastoquinone Reductases in Oxygenic Photosynthesis.
Annu Rev Plant Biol. 2016 Apr 29;67:55-80. doi: 10.1146/annurev-arplant-043014-114752. Epub 2015 Dec 21.
5
Chlamydomonas Flavodiiron Proteins Facilitate Acclimation to Anoxia During Sulfur Deprivation.
Plant Cell Physiol. 2015 Aug;56(8):1598-607. doi: 10.1093/pcp/pcv085. Epub 2015 Jun 10.
6
Cyanobacterial Oxygenic Photosynthesis is Protected by Flavodiiron Proteins.
Life (Basel). 2015 Mar 9;5(1):716-43. doi: 10.3390/life5010716.
7
Photoprotection of photosystems in fluctuating light intensities.
J Exp Bot. 2015 May;66(9):2427-36. doi: 10.1093/jxb/eru463. Epub 2014 Dec 1.
8
Adjustments of embryonic photosynthetic activity modulate seed fitness in Arabidopsis thaliana.
New Phytol. 2015 Jan;205(2):707-19. doi: 10.1111/nph.13044. Epub 2014 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验