Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, United States of America.
Nanotechnology. 2019 Jan 25;30(4):044002. doi: 10.1088/1361-6528/aaed5c. Epub 2018 Nov 22.
Photodetection at short- and mid-wavelength infrared (SWIR and MWIR) enables various sensing systems used in heat seeking, night vision, and spectroscopy. As a result, uncooled photodetection at these wavelengths is in high demand. However, these SWIR and MWIR photodetectors often suffer from high dark current, causing them to require bulky cooling accessories for operation. In this study, we argue for the feasibility of improving the room-temperature detectivity by significantly suppressing dark current. To realize this, we propose using (1) a nanowire-based platform to reduce the photoabsorber volume, which in turn reduces trap state population and hence generation-recombination current, and (2) p-n heterojunctions to prevent minority carrier diffusion from the large bandgap substrate into the nanowire absorber. We prove these concepts by demonstrating a comprehensive three-dimensional photoresponse model to explore the level of detectivity offered by vertical InAs(Sb) nanowire photodetector arrays with self-assembled plasmonic gratings. The resultant electrical simulations show that the dark current can be reduced by three to four orders at room temperature, leading to a peak detectivity greater than 3.5 × 10 cm Hz W within the wavelength regime of 2.0-3.4 μm, making it comparable to the best commercial and research InAs p-i-n homojunction photodiodes. In addition, we show that the plasmonic resonance peaks can be easily tuned by simply varying the exposed nanowire height. Finally, we investigate the impact of nanowire material properties, such as carrier mobility and carrier lifetime, on the nanowire photodetector detectivity. This work provides a roadmap for the electrical design of nanowire optoelectronic devices and stimulates further experimental validation for uncooled photodetectors at SWIR and MWIR.
在短波长红外 (SWIR) 和中波长红外 (MWIR) 进行光电探测可实现热成像、夜视和光谱学等各种传感系统。因此,对这些波长的非制冷光电探测有着很高的需求。然而,这些 SWIR 和 MWIR 光电探测器通常存在高暗电流问题,这导致它们需要庞大的冷却附件才能运行。在本研究中,我们提出通过显著抑制暗电流来提高室温探测率的可行性。为此,我们提出使用 (1) 基于纳米线的平台来减小光吸收器的体积,从而减少陷阱态的数量,进而减少产生复合电流;以及 (2) p-n 异质结来防止少数载流子从大带隙衬底扩散到纳米线吸收器中。我们通过演示一个全面的三维光响应模型来证明这些概念,该模型用于探索具有自组装等离子体光栅的垂直 InAs(Sb) 纳米线光电探测器阵列所能提供的探测率水平。所得的电气模拟表明,暗电流可在室温下降低三个到四个数量级,从而在 2.0-3.4μm 的波长范围内使峰值探测率大于 3.5×10 cm Hz W,与最佳商业和研究用 InAs p-i-n 同质结光电二极管相当。此外,我们还表明,只需简单地改变暴露的纳米线高度,就可以轻松调整等离子体共振峰。最后,我们研究了纳米线材料特性(如载流子迁移率和载流子寿命)对纳米线光电探测器探测率的影响。这项工作为纳米线光电电子器件的电气设计提供了路线图,并为 SWIR 和 MWIR 领域的非制冷光电探测器进一步的实验验证提供了动力。