Suppr超能文献

线粒体 TAT 转运酶的进化说明了细菌蛋白转运机器在线粒体中的丢失。

Evolution of mitochondrial TAT translocases illustrates the loss of bacterial protein transport machines in mitochondria.

机构信息

Department of Parasitology, Faculty of Science, BIOCEV, Charles University, Průmyslová 595, 252 50, Vestec, Czech Republic.

Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193, Berlin, Germany.

出版信息

BMC Biol. 2018 Nov 22;16(1):141. doi: 10.1186/s12915-018-0607-3.

Abstract

BACKGROUND

Bacteria and mitochondria contain translocases that function to transport proteins across or insert proteins into their inner and outer membranes. Extant mitochondria retain some bacterial-derived translocases but have lost others. While BamA and YidC were integrated into general mitochondrial protein transport pathways (as Sam50 and Oxa1), the inner membrane TAT translocase, which uniquely transports folded proteins across the membrane, was retained sporadically across the eukaryote tree.

RESULTS

We have identified mitochondrial TAT machinery in diverse eukaryotic lineages and define three different types of eukaryote-encoded TatABC-derived machineries (TatAC, TatBC and TatC-only). Here, we investigate TatAC and TatC-only machineries, which have not been studied previously. We show that mitochondria-encoded TatAC of the jakobid Andalucia godoyi represent the minimal functional pathway capable of substituting for the Escherichia coli TatABC complex and can transport at least one substrate. However, selected TatC-only machineries, from multiple eukaryotic lineages, were not capable of supporting the translocation of this substrate across the bacterial membrane. Despite the multiple losses of the TatC gene from the mitochondrial genome, the gene was never transferred to the cell nucleus. Although the major constraint preventing nuclear transfer of mitochondrial TatC is likely its high hydrophobicity, we show that in chloroplasts, such transfer of TatC was made possible due to modifications of the first transmembrane domain.

CONCLUSIONS

At its origin, mitochondria inherited three inner membrane translocases Sec, TAT and Oxa1 (YidC) from its bacterial ancestor. Our work shows for the first time that mitochondrial TAT has likely retained its unique function of transporting folded proteins at least in those few eukaryotes with TatA and TatC subunits encoded in the mitochondrial genome. However, mitochondria, in contrast to chloroplasts, abandoned the machinery multiple times in evolution. The overall lower hydrophobicity of the Oxa1 protein was likely the main reason why this translocase was nearly universally retained in mitochondrial biogenesis pathways.

摘要

背景

细菌和线粒体都含有移位酶,可将蛋白质转运到它们的内外膜之间或将蛋白质插入到内外膜中。现存的线粒体保留了一些细菌衍生的移位酶,但也失去了其他一些。虽然 BamA 和 YidC 被整合到一般的线粒体蛋白转运途径中(如 Sam50 和 Oxa1),但将折叠蛋白质穿过膜转运的独特内膜 TAT 移位酶在真核生物树中则是零星保留的。

结果

我们在不同的真核生物谱系中鉴定出线粒体 TAT 机器,并定义了三种不同类型的真核生物编码的 TatABC 衍生机器(TatAC、TatBC 和 TatC-only)。在这里,我们研究了以前没有研究过的 TatAC 和 TatC-only 机器。我们表明,jakobid Andalucia godoyi 的线粒体编码的 TatAC 代表了能够替代大肠杆菌 TatABC 复合物的最小功能途径,并且可以转运至少一种底物。然而,来自多个真核生物谱系的选定 TatC-only 机器不能支持该底物穿过细菌膜的转运。尽管线粒体基因组中多次丢失了 TatC 基因,但该基因从未被转移到细胞核中。尽管阻止线粒体 TatC 向核转移的主要限制因素可能是其高度疏水性,但我们表明,在叶绿体中,由于第一跨膜结构域的修饰,这种 TatC 的转移成为可能。

结论

在起源时,线粒体从其细菌祖先那里继承了三种内膜移位酶 Sec、TAT 和 Oxa1(YidC)。我们的工作首次表明,线粒体 TAT 至少在那些在线粒体基因组中编码 TatA 和 TatC 亚基的少数真核生物中,可能保留了其独特的折叠蛋白转运功能。然而,与叶绿体不同的是,线粒体在进化过程中多次放弃了这种机制。Oxa1 蛋白的总体较低疏水性可能是该移位酶几乎普遍保留在线粒体生物发生途径中的主要原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c2f/6251230/42054c87ee36/12915_2018_607_Fig1_HTML.jpg

相似文献

2
Fates of Sec, Tat, and YidC Translocases in Mitochondria and Other Eukaryotic Compartments.
Mol Biol Evol. 2021 Dec 9;38(12):5241-5254. doi: 10.1093/molbev/msab253.
3
A TatABC-type Tat translocase is required for unimpaired aerobic growth of Corynebacterium glutamicum ATCC13032.
PLoS One. 2015 Apr 2;10(4):e0123413. doi: 10.1371/journal.pone.0123413. eCollection 2015.
6
Signal Peptide Hydrophobicity Modulates Interaction with the Twin-Arginine Translocase.
mBio. 2017 Aug 1;8(4):e00909-17. doi: 10.1128/mBio.00909-17.
7
Surface-exposed domains of TatB involved in the structural and functional assembly of the Tat translocase in .
J Biol Chem. 2019 Sep 20;294(38):13902-13914. doi: 10.1074/jbc.RA119.009298. Epub 2019 Jul 24.
8
Substrate-dependent assembly of the Tat translocase as observed in live Escherichia coli cells.
PLoS One. 2013 Aug 2;8(8):e69488. doi: 10.1371/journal.pone.0069488. Print 2013.
9
Two minimal Tat translocases in Bacillus.
Mol Microbiol. 2004 Dec;54(5):1319-25. doi: 10.1111/j.1365-2958.2004.04341.x.
10
The TatC component of the twin-arginine protein translocase functions as an obligate oligomer.
Mol Microbiol. 2015 Oct;98(1):111-29. doi: 10.1111/mmi.13106. Epub 2015 Jul 22.

引用本文的文献

1
Evolutionary dynamics in plastomes and mitogenomes of diatoms.
PLoS One. 2025 Sep 5;20(9):e0331749. doi: 10.1371/journal.pone.0331749. eCollection 2025.
2
Installation of LYRM proteins in early eukaryotes to regulate the metabolic capacity of the emerging mitochondrion.
Open Biol. 2024 May;14(5):240021. doi: 10.1098/rsob.240021. Epub 2024 May 22.
3
Bacterial Type II Secretion System and Its Mitochondrial Counterpart.
mBio. 2023 Apr 25;14(2):e0314522. doi: 10.1128/mbio.03145-22. Epub 2023 Mar 27.
4
New insights into the Tat protein transport cycle from characterizing the assembled Tat translocon.
Mol Microbiol. 2022 Dec;118(6):637-651. doi: 10.1111/mmi.14984. Epub 2022 Oct 5.
5
Fates of Sec, Tat, and YidC Translocases in Mitochondria and Other Eukaryotic Compartments.
Mol Biol Evol. 2021 Dec 9;38(12):5241-5254. doi: 10.1093/molbev/msab253.
7
Vestiges of the Bacterial Signal Recognition Particle-Based Protein Targeting in Mitochondria.
Mol Biol Evol. 2021 Jul 29;38(8):3170-3187. doi: 10.1093/molbev/msab090.
9
Mitochondrial genome sequence of Phytophthora sansomeana and comparative analysis of Phytophthora mitochondrial genomes.
PLoS One. 2020 May 14;15(5):e0231296. doi: 10.1371/journal.pone.0231296. eCollection 2020.

本文引用的文献

2
Iron economy in Naegleria gruberi reflects its metabolic flexibility.
Int J Parasitol. 2018 Aug;48(9-10):719-727. doi: 10.1016/j.ijpara.2018.03.005. Epub 2018 May 5.
3
A New Lineage of Eukaryotes Illuminates Early Mitochondrial Genome Reduction.
Curr Biol. 2017 Dec 4;27(23):3717-3724.e5. doi: 10.1016/j.cub.2017.10.051. Epub 2017 Nov 22.
4
The Origin and Diversification of Mitochondria.
Curr Biol. 2017 Nov 6;27(21):R1177-R1192. doi: 10.1016/j.cub.2017.09.015.
5
Structural features of the TatC membrane protein that determine docking and insertion of a twin-arginine signal peptide.
J Biol Chem. 2017 Dec 29;292(52):21320-21329. doi: 10.1074/jbc.M117.812560. Epub 2017 Oct 31.
7
Signal Peptide Hydrophobicity Modulates Interaction with the Twin-Arginine Translocase.
mBio. 2017 Aug 1;8(4):e00909-17. doi: 10.1128/mBio.00909-17.
8
Why mitochondria need a genome revisited.
FEBS Lett. 2017 Jan;591(1):65-75. doi: 10.1002/1873-3468.12510. Epub 2016 Dec 20.
9
Assembling the Tat protein translocase.
Elife. 2016 Dec 3;5:e20718. doi: 10.7554/eLife.20718.
10
Evolution of the Tim17 protein family.
Biol Direct. 2016 Oct 19;11(1):54. doi: 10.1186/s13062-016-0157-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验