文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习光学切片方法。

Deep learning optical-sectioning method.

作者信息

Zhang Xiaoyu, Chen Yifan, Ning Kefu, Zhou Can, Han Yutong, Gong Hui, Yuan Jing

出版信息

Opt Express. 2018 Nov 12;26(23):30762-30772. doi: 10.1364/OE.26.030762.


DOI:10.1364/OE.26.030762
PMID:30469968
Abstract

Current optical-sectioning methods require complex optical system or considerable computation time to improve imaging quality. Here we propose a deep learning-based method for optical sectioning of wide-field images. This method only needs one pair of contrast images for training to facilitate reconstruction of an optically sectioned image. The removal effect of background information and resolution that is achievable with our technique is similar to traditional optical-sectioning methods, but offers lower noise levels and a higher imaging depth. Moreover, reconstruction speed can be optimized to 14 Hz. This cost-effective and convenient method enables high-throughput optical sectioning techniques to be developed.

摘要

当前的光学切片方法需要复杂的光学系统或相当长的计算时间来提高成像质量。在此,我们提出一种基于深度学习的宽场图像光学切片方法。该方法仅需一对对比度图像进行训练,以利于光学切片图像重建。我们技术实现的背景信息去除效果和分辨率与传统光学切片方法相似,但具有更低的噪声水平和更高的成像深度。此外,重建速度可优化至14赫兹。这种经济高效且便捷的方法能够推动高通量光学切片技术的发展。

相似文献

[1]
Deep learning optical-sectioning method.

Opt Express. 2018-11-12

[2]
Full-color optically-sectioned imaging by wide-field microscopy via deep-learning.

Biomed Opt Express. 2020-4-17

[3]
Deep learning based one-shot optically-sectioned structured illumination microscopy for surface measurement.

Opt Express. 2021-2-1

[4]
Deep learning 2D and 3D optical sectioning microscopy using cross-modality Pix2Pix cGAN image translation.

Biomed Opt Express. 2021-11-12

[5]
Jointly super-resolved and optically sectioned Bayesian reconstruction method for structured illumination microscopy.

Opt Express. 2019-11-11

[6]
Double-exposure optical sectioning structured illumination microscopy based on Hilbert transform reconstruction.

PLoS One. 2015-3-23

[7]
In Vivo Observations of Rapid Scattered Light Changes Associated with Neurophysiological Activity

2009

[8]
High-throughput optical sectioning via line-scanning imaging with digital structured modulation.

Opt Lett. 2021-2-1

[9]
Deep learning enables confocal laser-scanning microscopy with enhanced resolution.

Opt Lett. 2021-10-1

[10]
Deep-learning-based whole-brain imaging at single-neuron resolution.

Biomed Opt Express. 2020-6-8

引用本文的文献

[1]
Optical sectioning methods in three-dimensional bioimaging.

Light Sci Appl. 2025-1-1

[2]
Exceeding the limit for microscopic image translation with a deep learning-based unified framework.

PNAS Nexus. 2024-3-29

[3]
Fast, multicolour optical sectioning over extended fields of view with patterned illumination and machine learning.

Biomed Opt Express. 2024-1-25

[4]
Optical tomography in a single camera frame using fringe-encoded deep-learning full-field OCT.

Biomed Opt Express. 2023-12-14

[5]
Whole-brain Optical Imaging: A Powerful Tool for Precise Brain Mapping at the Mesoscopic Level.

Neurosci Bull. 2023-12

[6]
Superresolution structured illumination microscopy reconstruction algorithms: a review.

Light Sci Appl. 2023-7-12

[7]
Deep-3D microscope: 3D volumetric microscopy of thick scattering samples using a wide-field microscope and machine learning.

Biomed Opt Express. 2021-12-10

[8]
Deep learning 2D and 3D optical sectioning microscopy using cross-modality Pix2Pix cGAN image translation.

Biomed Opt Express. 2021-11-12

[9]
Wavelet-based background and noise subtraction for fluorescence microscopy images.

Biomed Opt Express. 2021-1-22

[10]
Deep-learning-based whole-brain imaging at single-neuron resolution.

Biomed Opt Express. 2020-6-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索