文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过图案照明和机器学习在扩展视野上进行快速、多色光学切片。

Fast, multicolour optical sectioning over extended fields of view with patterned illumination and machine learning.

作者信息

Ward Edward N, McClelland Rebecca M, Lamb Jacob R, Rubio-Sánchez Roger, Christensen Charles N, Mazumder Bismoy, Kapsiani Sofia, Mascheroni Luca, Di Michele Lorenzo, Kaminski Schierle Gabriele S, Kaminski Clemens F

机构信息

Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK.

fabriCELL, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK.

出版信息

Biomed Opt Express. 2024 Jan 25;15(2):1074-1088. doi: 10.1364/BOE.510912. eCollection 2024 Feb 1.


DOI:10.1364/BOE.510912
PMID:38404329
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10890859/
Abstract

Structured illumination can reject out-of-focus signal from a sample, enabling high-speed and high-contrast imaging over large areas with widefield detection optics. However, this optical sectioning technique is currently limited by image reconstruction artefacts and poor performance at low signal-to-noise ratios. We combine multicolour interferometric pattern generation with machine learning to achieve high-contrast, real-time reconstruction of image data that is robust to background noise and sample motion. We validate the method and demonstrate imaging of diverse specimens, from fixed and live biological samples to synthetic biosystems, reconstructing data live at 11 Hz across a 44 × 44 field of view, and demonstrate image acquisition speeds exceeding 154 Hz.

摘要

结构光照明显微技术能够抑制样本的离焦信号,从而利用宽视场检测光学元件在大面积区域实现高速、高对比度成像。然而,这种光学切片技术目前受到图像重建伪影以及低信噪比下性能不佳的限制。我们将多色干涉图案生成与机器学习相结合,以实现对背景噪声和样本运动具有鲁棒性的高对比度图像数据实时重建。我们对该方法进行了验证,并展示了对各种样本的成像,从固定和活的生物样本到合成生物系统,在44×44视场范围内以11Hz的速度实时重建数据,并展示了超过154Hz的图像采集速度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/449f/10890859/fdfad76a7915/boe-15-2-1074-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/449f/10890859/14b675e7806d/boe-15-2-1074-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/449f/10890859/4c86f19e29c1/boe-15-2-1074-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/449f/10890859/e11debc7aa6c/boe-15-2-1074-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/449f/10890859/a2d29ce60aa8/boe-15-2-1074-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/449f/10890859/2ced9a076dd9/boe-15-2-1074-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/449f/10890859/87748667d374/boe-15-2-1074-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/449f/10890859/9e2c5d173296/boe-15-2-1074-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/449f/10890859/10056a816637/boe-15-2-1074-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/449f/10890859/8c34428e9652/boe-15-2-1074-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/449f/10890859/fdfad76a7915/boe-15-2-1074-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/449f/10890859/14b675e7806d/boe-15-2-1074-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/449f/10890859/4c86f19e29c1/boe-15-2-1074-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/449f/10890859/e11debc7aa6c/boe-15-2-1074-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/449f/10890859/a2d29ce60aa8/boe-15-2-1074-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/449f/10890859/2ced9a076dd9/boe-15-2-1074-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/449f/10890859/87748667d374/boe-15-2-1074-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/449f/10890859/9e2c5d173296/boe-15-2-1074-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/449f/10890859/10056a816637/boe-15-2-1074-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/449f/10890859/8c34428e9652/boe-15-2-1074-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/449f/10890859/fdfad76a7915/boe-15-2-1074-g010.jpg

相似文献

[1]
Fast, multicolour optical sectioning over extended fields of view with patterned illumination and machine learning.

Biomed Opt Express. 2024-1-25

[2]
Fast widefield imaging of neuronal structure and function with optical sectioning in vivo.

Sci Adv. 2020-5-8

[3]
Flexible structured illumination microscope with a programmable illumination array.

Opt Express. 2012-10-22

[4]
Simultaneous multicolour imaging using quantum dot structured illumination microscopy.

J Microsc. 2020-1-23

[5]
ML-SIM: universal reconstruction of structured illumination microscopy images using transfer learning.

Biomed Opt Express. 2021-4-15

[6]
In Vivo Observations of Rapid Scattered Light Changes Associated with Neurophysiological Activity

2009

[7]
Improved contrast in inverted selective plane illumination microscopy of thick tissues using confocal detection and structured illumination.

Biomed Opt Express. 2017-11-13

[8]
Video-rate volumetric neuronal imaging using 3D targeted illumination.

Sci Rep. 2018-5-21

[9]
Out-of-focus background subtraction for fast structured illumination super-resolution microscopy of optically thick samples.

J Microsc. 2015-9

[10]
Optical sectioning microscopy with planar or structured illumination.

Nat Methods. 2011-9-29

本文引用的文献

[1]
Superresolution structured illumination microscopy reconstruction algorithms: a review.

Light Sci Appl. 2023-7-12

[2]
Machine learning assisted interferometric structured illumination microscopy for dynamic biological imaging.

Nat Commun. 2022-12-21

[3]
Amphiphilic DNA nanostructures for bottom-up synthetic biology.

Chem Commun (Camb). 2021-11-30

[4]
Multi-color structured illumination microscopy for live cell imaging based on the enhanced image recombination transform algorithm.

Biomed Opt Express. 2021-5-17

[5]
Deep learning based one-shot optically-sectioned structured illumination microscopy for surface measurement.

Opt Express. 2021-2-1

[6]
A Modular, Dynamic, DNA-Based Platform for Regulating Cargo Distribution and Transport between Lipid Domains.

Nano Lett. 2021-4-14

[7]
Fast widefield imaging of neuronal structure and function with optical sectioning in vivo.

Sci Adv. 2020-5-8

[8]
Deep learning optical-sectioning method.

Opt Express. 2018-11-12

[9]
Inverse matrix based phase estimation algorithm for structured illumination microscopy.

Biomed Opt Express. 2018-9-27

[10]
Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy.

Nat Biotechnol. 2018-4-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索