Suppr超能文献

深度三维显微镜:使用宽视场显微镜和机器学习对厚散射样本进行三维体积显微镜检查。

Deep-3D microscope: 3D volumetric microscopy of thick scattering samples using a wide-field microscope and machine learning.

作者信息

Li Bowen, Tan Shiyu, Dong Jiuyang, Lian Xiaocong, Zhang Yongbing, Ji Xiangyang, Veeraraghavan Ashok

机构信息

Department of Automation & BNRist, Tsinghua University, Beijing, China.

Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.

出版信息

Biomed Opt Express. 2021 Dec 10;13(1):284-299. doi: 10.1364/BOE.444488. eCollection 2022 Jan 1.

Abstract

Confocal microscopy is a standard approach for obtaining volumetric images of a sample with high axial and lateral resolution, especially when dealing with scattering samples. Unfortunately, a confocal microscope is quite expensive compared to traditional microscopes. In addition, the point scanning in confocal microscopy leads to slow imaging speed and photobleaching due to the high dose of laser energy. In this paper, we demonstrate how the advances in machine learning can be exploited to "teach" a traditional wide-field microscope, one that's available in every lab, into producing 3D volumetric images like a confocal microscope. The key idea is to obtain multiple images with different focus settings using a wide-field microscope and use a 3D generative adversarial network (GAN) based neural network to learn the mapping between the blurry low-contrast image stacks obtained using a wide-field microscope and the sharp, high-contrast image stacks obtained using a confocal microscope. After training the network with widefield-confocal stack pairs, the network can reliably and accurately reconstruct 3D volumetric images that rival confocal images in terms of its lateral resolution, z-sectioning and image contrast. Our experimental results demonstrate generalization ability to handle unseen data, stability in the reconstruction results, high spatial resolution even when imaging thick (∼40 microns) highly-scattering samples. We believe that such learning-based microscopes have the potential to bring confocal imaging quality to every lab that has a wide-field microscope.

摘要

共聚焦显微镜是一种用于获取具有高轴向和横向分辨率的样品体积图像的标准方法,特别是在处理散射样品时。不幸的是,与传统显微镜相比,共聚焦显微镜相当昂贵。此外,共聚焦显微镜中的点扫描由于激光能量剂量高,导致成像速度慢和光漂白。在本文中,我们展示了如何利用机器学习的进展来“教导”传统的宽视场显微镜(每个实验室都有)生成类似共聚焦显微镜的三维体积图像。关键思想是使用宽视场显微镜获取具有不同聚焦设置的多个图像,并使用基于三维生成对抗网络(GAN)的神经网络来学习宽视场显微镜获得的模糊低对比度图像堆栈与共聚焦显微镜获得的清晰高对比度图像堆栈之间的映射。在用宽视场-共聚焦堆栈对训练网络之后,该网络可以可靠且准确地重建三维体积图像,其横向分辨率、z轴切片和图像对比度可与共聚焦图像相媲美。我们的实验结果证明了该网络处理未见数据的泛化能力、重建结果的稳定性以及即使在对厚(约40微米)高散射样品成像时也具有高空间分辨率。我们相信,这种基于学习的显微镜有潜力为每个拥有宽视场显微镜的实验室带来共聚焦成像质量。

相似文献

本文引用的文献

4
Deep-learning-based whole-brain imaging at single-neuron resolution.基于深度学习的单神经元分辨率全脑成像。
Biomed Opt Express. 2020 Jun 8;11(7):3567-3584. doi: 10.1364/BOE.393081. eCollection 2020 Jul 1.
5
Dynamic conjugate F-SHARP microscopy.动态共轭F-SHARP显微镜术
Light Sci Appl. 2020 Jun 30;9:110. doi: 10.1038/s41377-020-00348-x. eCollection 2020.
10
Low Photon Count Phase Retrieval Using Deep Learning.基于深度学习的低光子计数相位恢复。
Phys Rev Lett. 2018 Dec 14;121(24):243902. doi: 10.1103/PhysRevLett.121.243902.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验