Suppr超能文献

基于 CT 图像的有限元分析的骨骼形状和皮质厚度的监督学习。

Supervised learning for bone shape and cortical thickness estimation from CT images for finite element analysis.

机构信息

Institute of Surgical Technology and Biomechanics, University of Bern, Switzerland.

Institute of Surgical Technology and Biomechanics, University of Bern, Switzerland.

出版信息

Med Image Anal. 2019 Feb;52:42-55. doi: 10.1016/j.media.2018.11.001. Epub 2018 Nov 16.

Abstract

Knowledge about the thickness of the cortical bone is of high interest for fracture risk assessment. Most finite element model solutions overlook this information because of the coarse resolution of the CT images. To circumvent this limitation, a three-steps approach is proposed. 1) Two initial surface meshes approximating the outer and inner cortical surfaces are generated via a shape regression based on morphometric features and statistical shape model parameters. 2) The meshes are then corrected locally using a supervised learning model build from image features extracted from pairs of QCT (0.3-1 mm resolution) and HRpQCT images (82 µm resolution). As the resulting meshes better follow the cortical surfaces, the cortical thickness can be estimated at sub-voxel precision. 3) The meshes are finally regularized by a Gaussian process model featuring a two-kernel model, which seamlessly enables smoothness and shape-awareness priors during regularization. The resulting meshes yield high-quality mesh element properties, suitable for construction of tetrahedral meshes and finite element simulations. This pipeline was applied to 36 pairs of proximal femurs (17 males, 19 females, 76 ± 12 years) scanned under QCT and HRpQCT modalities. On a set of leave-one-out experiments, we quantified accuracy (root mean square error = 0.36 ± 0.29 mm) and robustness (Hausdorff distance = 3.90 ± 1.57 mm) of the outer surface meshes. The error in the estimated cortical thickness (0.05 ± 0.40 mm), and the tetrahedral mesh quality (aspect ratio = 1.4 ± 0.02) are also reported. The proposed pipeline produces finite element meshes with patient-specific bone shape and sub-voxel cortical thickness directly from CT scans. It also ensures that the nodes and elements numbering remains consistent and independent of the morphology, which is a distinct advantage in population studies.

摘要

关于皮质骨厚度的知识对于骨折风险评估非常重要。由于 CT 图像的分辨率较低,大多数有限元模型解决方案都忽略了这一信息。为了克服这一局限性,提出了一种三步骤方法。1)通过基于形态计量特征和统计形状模型参数的形状回归生成两个初始表面网格,分别近似外皮质表面和内皮质表面。2)然后使用从 QCT(0.3-1mm 分辨率)和 HRpQCT(82µm 分辨率)图像对提取的图像特征构建的监督学习模型对网格进行局部校正。由于生成的网格更好地遵循皮质表面,因此可以以亚像素精度估计皮质厚度。3)最后,通过具有双核模型的高斯过程模型对网格进行正则化,该模型在正则化过程中无缝地实现了平滑度和形状感知先验。生成的网格具有高质量的网格元素属性,适合构建四面体网格和有限元模拟。该流水线应用于 36 对 QCT 和 HRpQCT 扫描的股骨近端(男性 17 例,女性 19 例,76±12 岁)。在一组留一法实验中,我们量化了外表面网格的准确性(均方根误差=0.36±0.29mm)和稳健性(Hausdorff 距离=3.90±1.57mm)。估计的皮质厚度的误差(0.05±0.40mm)和四面体网格质量(纵横比=1.4±0.02)也有所报道。该流水线可从 CT 扫描直接生成具有患者特定骨形状和亚像素皮质厚度的有限元网格。它还确保节点和元素编号保持一致且与形态无关,这在人群研究中是一个明显的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验