Suppr超能文献

一种逐层方法,用于将荧光葡萄糖传感测定法保留在水凝胶膜腔内。

A Layer-by-Layer Approach To Retain a Fluorescent Glucose Sensing Assay within the Cavity of a Hydrogel Membrane.

作者信息

Locke Andrea K, Means Anna Kristen, Dong Ping, Nichols Tyler J, Coté Gerard L, Grunlan Melissa A

机构信息

Department of Biomedical Engineering, Department of Materials Science and Engineering, Department of Chemistry, and Center for Remote Healthcare Technologies, Texas A&M University, College Station, Texas 77843-3120, United States.

出版信息

ACS Appl Bio Mater. 2018 Nov 19;1(5):1319-1327. doi: 10.1021/acsabm.8b00267. Epub 2018 Oct 10.

Abstract

A continuous glucose monitoring device that resides fully in the subcutaneous tissue has the potential to greatly improve the management of diabetes. Toward this goal, we have developed a competitive binding glucose sensing assay based on fluorescently labeled PEGylated concanavalin-A (PEGylated-TRITC-ConA) and mannotetraose (APTS-MT). In the present work, we sought to contain this assay within the hollow central cavity of a cylindrical hydrogel membrane, permitting eventual subcutaneous implantation and optical probing through the skin. A "self-cleaning" hydrogel was utilized because of its ability to cyclically deswell/reswell in vivo, which is expected to reduce biofouling and therefore extend the sensor lifetime. Thus, we prepared a hollow, cylindrical hydrogel based on a thermoresponsive electrostatic double network design composed of -isopropylacrylamide and 2-acrylamido-2-methylpropanesulfonic acid. Next, a layer-by-layer (LbL) coating was applied to the inner wall of the central cavity of the cylindrical membrane. It consisted of 5, 10, 15, 30, or 40 alternating bilayers of positively charged poly(diallyldimethylammonium chloride) and negatively charged poly(sodium 4-styrenesulfonate). With 30 bilayers, the leaching of the smaller-sized component of the assay (APTS-MT) from the membrane cavity was substantially reduced. Moreover, this LbL coating maintained glucose diffusion across the hydrogel membrane. In terms of sensor functionality, the assay housed in the hydrogel membrane cavity tracked changes in glucose concentration (0 to 600 mg/dL) with a mean absolute relative difference of ∼11%.

摘要

一种完全植入皮下组织的连续血糖监测设备有潜力极大地改善糖尿病的管理。为实现这一目标,我们开发了一种基于荧光标记的聚乙二醇化伴刀豆球蛋白A(聚乙二醇化-TRITC-ConA)和甘露四糖(APTS-MT)的竞争性结合葡萄糖传感检测方法。在当前工作中,我们试图将这种检测方法封装在圆柱形水凝胶膜的中空中心腔内,以便最终能够皮下植入并通过皮肤进行光学探测。使用了一种“自清洁”水凝胶,因为它在体内具有周期性去溶胀/再溶胀的能力,预计这将减少生物污染,从而延长传感器寿命。因此,我们基于由N-异丙基丙烯酰胺和2-丙烯酰胺基-2-甲基丙烷磺酸组成的热响应性静电双网络设计制备了一种中空圆柱形水凝胶。接下来,在圆柱形膜中心腔的内壁上进行了层层(LbL)涂层处理。它由5、10、15、30或40个交替的带正电的聚二烯丙基二甲基氯化铵和带负电的聚(4-苯乙烯磺酸钠)双层组成。有30个双层时,检测方法中较小尺寸成分(APTS-MT)从膜腔中的浸出显著减少。此外,这种LbL涂层保持了葡萄糖在水凝胶膜上的扩散。在传感器功能方面,封装在水凝胶膜腔中的检测方法跟踪葡萄糖浓度(0至600 mg/dL)的变化,平均绝对相对差异约为11%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d4/6247246/578961862136/mt-2018-00267s_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验