Suppr超能文献

泰勒法则斜率的近因决定因素。

Proximate determinants of Taylor's law slopes.

机构信息

Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.

Department of Ecology and Evolutionary Biology and Kansas Biological Survey, University of Kansas, Lawrence, Kansas.

出版信息

J Anim Ecol. 2019 Mar;88(3):484-494. doi: 10.1111/1365-2656.12931. Epub 2019 Jan 22.

Abstract

Taylor's law (TL), a commonly observed and applied pattern in ecology, describes variances of population densities as related to mean densities via log(variance) = log(a) + b*log(mean). Variations among datasets in the slope, b, have been associated with multiple factors of central importance in ecology, including strength of competitive interactions and demographic rates. But these associations are not transparent, and the relative importance of these and other factors for TL slope variation is poorly studied. TL is thus a ubiquitously used indicator in ecology, the understanding of which is still opaque. The goal of this study was to provide tools to help fill this gap in understanding by providing proximate determinants of TL slopes, statistical quantities that are correlated to TL slopes but are simpler than the slope itself and are more readily linked to ecological factors. Using numeric simulations and 82 multi-decadal population datasets, we here propose, test and apply two proximate statistical determinants of TL slopes which we argue can become key tools for understanding the nature and ecological causes of TL slope variation. We find that measures based on population skewness, coefficient of variation and synchrony are effective proximate determinants. We demonstrate their potential for application by using them to help explain covariation in slopes of spatial and temporal TL (two common types of TL). This study provides tools for understanding TL, and demonstrates their usefulness.

摘要

泰勒法则(TL)是生态学中一种常见的观察和应用模式,它描述了种群密度的方差与平均密度之间的关系,即方差的对数等于 a 的对数加上 b 乘以平均密度的对数。数据集中斜率 b 的变化与生态学中多个重要因素有关,包括竞争相互作用的强度和人口率。但这些关联并不透明,TL 斜率变化的这些因素和其他因素的相对重要性也未得到充分研究。因此,TL 是生态学中广泛使用的指标,但其理解仍然不透明。本研究的目的是提供工具,通过提供 TL 斜率的近似决定因素来帮助填补这一理解空白,这些近似决定因素是与 TL 斜率相关但比斜率本身更简单的统计量,并且更容易与生态因素联系起来。使用数值模拟和 82 个多十年的种群数据集,我们在这里提出、测试和应用了 TL 斜率的两个近似统计决定因素,我们认为这两个因素可以成为理解 TL 斜率变化的性质和生态原因的关键工具。我们发现,基于种群偏度、变异系数和同步性的度量是有效的近似决定因素。我们通过使用它们来帮助解释时空 TL(两种常见的 TL 类型)斜率的协变,来证明它们的应用潜力。本研究提供了理解 TL 的工具,并展示了它们的有用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验