National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , P. R. China.
Department of Cell and Chemical Biology , Leiden University Medical Center , 2333 ZC Leiden , The Netherlands.
ACS Appl Mater Interfaces. 2018 Dec 19;10(50):43923-43935. doi: 10.1021/acsami.8b17041. Epub 2018 Dec 5.
In this work, we presented ternary nanoparticles [poly(carboxybetaine methacrylate) (pCBMA)(peptide dendrimer-modified carbon dots (CD-D)/doxorubicin (DOX))] based on peptide dendritic carbon dots (CDs) to realize tumor-specific drug delivery and highly efficient cancer therapy. The versatile nanoparticles could achieve "stealth" delivery in blood due to the antifouling zwitterion coating. Meanwhile, charge changes of the zwitterions could be moderated during their transportation toward/inside tumor cells, where subtle environmental pH variations acted as potent stimuli to actualize desired functions. In particular, the detachment of the zwitterionic "coat" at the tumor site resulted in the exposure of abundant peripheral guanidine groups on peptide dendritic carbon dots (CD-D/DOX) owing to the extracellular pH environment (pH 6.8)-induced charge conversion. Consequently, the positively charged CD-D/DOX (+7.02 mV) interacted with the negatively charged cancer cell membrane to enhance cellular uptake. After endocytosis, tumor intracellular microenvironments (acidic conditions and high glutathione (GSH) levels) could lead to effective disintegration of the CD-D/DOX entities due to acid-induced protonation of guanidine groups and glutathione-induced cleavage of peptide dendritic components on CDs, and then effective endosomal escape and fast doxorubicin hydrochloride (DOX·HCl) release (73.2% accumulative release within 4 h) were achieved successively. This strategy enabled a 9.19-fold drug release rate at tumor sites in comparison with the one in the physiological environment. Moreover, the excellent fluorescence properties of CDs endowed the pCBMA(CD-D/DOX) with fluorescence bioimaging function. In view of the above-mentioned advantages, pCBMA(CD-D/DOX) exhibited outstanding antitumor activities both in vitro and in vivo, demonstrating much higher antitumor efficacy and less side effects than the free DOX·HCl.
在这项工作中,我们提出了基于肽树枝状碳点(CDs)的三元纳米粒子[聚(羧基甜菜碱甲基丙烯酰胺)(pCBMA)(肽树枝状大分子修饰的碳点(CD-D)/阿霉素(DOX))],以实现肿瘤特异性药物输送和高效癌症治疗。多功能纳米粒子由于具有抗污的两性离子涂层,能够在血液中实现“隐身”输送。同时,两性离子的电荷变化可以在它们向/进入肿瘤细胞的运输过程中得到调节,其中微妙的环境 pH 值变化作为强大的刺激因素来实现所需的功能。特别是,由于细胞外 pH 环境(pH6.8)引起的电荷转换,在肿瘤部位两性离子“外套”的脱落后,由于肽树枝状大分子修饰的碳点(CD-D/DOX)上丰富的外围胍基的暴露。因此,带正电荷的 CD-D/DOX(+7.02mV)与带负电荷的癌细胞膜相互作用,增强细胞摄取。内吞后,由于酸性条件和高谷胱甘肽(GSH)水平引起的胍基质子化以及谷胱甘肽诱导的 CDs 上肽树枝状成分的裂解,肿瘤细胞内微环境(酸性条件和高谷胱甘肽(GSH)水平)可导致 CD-D/DOX 实体的有效解体,随后有效实现内涵体逃逸和盐酸阿霉素(DOX·HCl)的快速释放(4h 内累积释放 73.2%)。与生理环境相比,该策略使肿瘤部位的药物释放率提高了 9.19 倍。此外,CDs 的优异荧光性能赋予 pCBMA(CD-D/DOX)荧光生物成像功能。鉴于上述优点,pCBMA(CD-D/DOX)在体外和体内均表现出优异的抗肿瘤活性,显示出比游离 DOX·HCl 更高的抗肿瘤疗效和更少的副作用。