Suppr超能文献

高度自适应欠采样模式在肺部超极化氙动态 MRI 中的应用。

Highly and Adaptively Undersampling Pattern for Pulmonary Hyperpolarized Xe Dynamic MRI.

出版信息

IEEE Trans Med Imaging. 2019 May;38(5):1240-1250. doi: 10.1109/TMI.2018.2882209. Epub 2018 Nov 20.

Abstract

Hyperpolarized (HP) gas (e.g., He or Xe) dynamic MRI could visualize the lung ventilation process, which provides characteristics regarding lung physiology and pathophysiology. Compressed sensing (CS) is generally used to increase the temporal resolution of such dynamic MRI. Nevertheless, the acceleration factor of CS is constant, which results in difficulties in precisely observing and/or measuring dynamic ventilation process due to bifurcating network structure of the lung. Here, an adaptive strategy is proposed to highly undersample pulmonary HP dynamic k-space data, according to the characteristics of both lung structure and gas motion. After that, a valid reconstruction algorithm is developed to reconstruct dynamic MR images, considering the low-rank, global sparsity, gas-inflow effects, and joint sparsity. Both the simulation and the in vivo results verify that the proposed approach outperforms the state-of-the-art methods both in qualitative and quantitative comparisons. In particular, the proposed method acquires 33 frames within 6.67 s (more than double the temporal resolution of the recently proposed strategy), and achieves high-image quality [the improvements are 29.63%, 3.19%, 2.08%, and 13.03% regarding the mean absolute error (MAE), structural similarity index (SSIM), quality index based on local variance (QILV), and contrast-to-noise ratio (CNR) comparisons]. This provides accurate structural and functional information for early detection of obstructive lung diseases.

摘要

超极化(HP)气体(例如氦或氙)动态 MRI 可用于可视化肺部通气过程,提供有关肺生理和病理生理学的特征。压缩感知(CS)通常用于提高这种动态 MRI 的时间分辨率。然而,CS 的加速因子是固定的,这导致由于肺部分支网络结构难以精确观察和/或测量动态通气过程。在这里,根据肺部结构和气体运动的特点,提出了一种自适应策略来对肺部 HP 动态 k 空间数据进行高度欠采样。之后,开发了一种有效的重建算法来重建动态 MR 图像,考虑到低秩、全局稀疏性、气体流入效应和联合稀疏性。模拟和体内结果均验证了所提出的方法在定性和定量比较方面均优于最先进的方法。特别是,该方法在 6.67 秒内采集了 33 帧(是最近提出的策略的时间分辨率的两倍以上),并且实现了高质量的图像[在平均绝对误差(MAE)、结构相似性指数(SSIM)、基于局部方差的质量指数(QILV)和对比度噪声比(CNR)比较方面,分别提高了 29.63%、3.19%、2.08%和 13.03%]。这为早期发现阻塞性肺部疾病提供了准确的结构和功能信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验