Suppr超能文献

联合临床参数和多参数磁共振成像预测前列腺外疾病-用于计划根治性前列腺切除术时患者个体化风险分层的风险模型。

Combined Clinical Parameters and Multiparametric Magnetic Resonance Imaging for the Prediction of Extraprostatic Disease-A Risk Model for Patient-tailored Risk Stratification When Planning Radical Prostatectomy.

机构信息

Department of Urology, University Hospital Heidelberg, Heidelberg, Germany.

Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany.

出版信息

Eur Urol Focus. 2020 Nov 15;6(6):1205-1212. doi: 10.1016/j.euf.2018.11.004. Epub 2018 Nov 23.

Abstract

BACKGROUND

Multiparametric magnetic resonance imaging (mpMRI) facilitates the detection of significant prostate cancer. Therefore, addition of mpMRI to clinical parameters might improve the prediction of extraprostatic extension (EPE) in radical prostatectomy (RP) specimens.

OBJECTIVE

To investigate the accuracy of a novel risk model (RM) combining clinical and mpMRI parameters to predict EPE in RP specimens.

DESIGN, SETTING, AND PARTICIPANTS: We added prebiopsy mpMRI to clinical parameters and developed an RM to predict individual side-specific EPE (EPE-RM). Clinical parameters of 264 consecutive men with mpMRI prior to MRI/transrectal ultrasound fusion biopsy and subsequent RP between 2012 and 2015 were retrospectively analysed.

OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS

Multivariate regression analyses were used to determine significant EPE predictors for RM development. The prediction performance of the novel EPE-RM was compared with clinical T stage (cT), MR-European Society of Urogenital Radiology (ESUR) classification for EPE, two established nomograms (by Steuber et al and Ohori et al) and a clinical nomogram based on the coefficients of the established nomograms, and was constructed based on the data of the present cohort, using receiver operating characteristics (ROCs). For comparison, models' likelihood ratio (LR) tests and Vuong tests were used. Discrimination and calibration of the EPE-RM were validated based on resampling methods using bootstrapping.

RESULTS AND LIMITATIONS

International society of Urogenital Pathology grade on biopsy, ESUR criteria, prostate-specific antigen, cT, prostate volume, and capsule contact length were included in the EPE-RM. Calibration of the EPE-RM was good (error 0.018). The ROC area under the curve for the EPE-RM was larger (0.87) compared with cT (0.66), Memorial Sloan Kettering Cancer Center nomogram (0.73), Steuber nomogram (0.70), novel clinical nomogram (0.79), and ESUR classification (0.81). Based on LR and Vuong tests, the EPE-RM's model fit was significantly better than that of cT, all clinical models, and ESUR classification alone (p<0.001). Limitations include monocentric design and expert reading of MRI.

CONCLUSIONS

This novel EPE-RM, incorporating clinical and MRI parameters, performed better than contemporary clinical RMs and MRI predictors, therefore providing an accurate patient-tailored preoperative risk stratification of side-specific EPE.

PATIENT SUMMARY

Extraprostatic extension of prostate cancer can be predicted accurately using a combination of magnetic resonance imaging and clinical parameters. This novel risk model outperforms magnetic resonance imaging and clinical predictors alone and can be useful when planning nerve-sparing radical prostatectomy.

摘要

背景

多参数磁共振成像(mpMRI)有助于检测显著的前列腺癌。因此,将 mpMRI 与临床参数相结合,可能会提高在根治性前列腺切除术(RP)标本中预测前列腺外延伸(EPE)的准确性。

目的

研究一种新的风险模型(RM),该模型结合临床和 mpMRI 参数,以预测 RP 标本中的 EPE。

设计、地点和参与者:我们在 MRI/经直肠超声融合活检前添加了术前 mpMRI,并开发了一种预测个体侧特定 EPE(EPE-RM)的 RM。对 2012 年至 2015 年间接受 MRI/经直肠超声融合活检和随后的 RP 的 264 例连续男性的临床参数进行了回顾性分析。

观察指标和统计分析

采用多元回归分析确定 RM 发展的显著 EPE 预测因子。与临床 T 期(cT)、磁共振-欧洲泌尿放射学会(ESUR)EPE 分类、两种已建立的列线图(Steuber 等和 Ohori 等)和基于已建立列线图系数的临床列线图相比,比较了新的 EPE-RM 的预测性能,并基于本队列的数据,使用受试者工作特征(ROC)进行构建。为了比较,还使用了模型似然比(LR)检验和 Vuong 检验。使用基于 bootstrap 的重采样方法验证了 EPE-RM 的判别和校准。

结果和局限性

国际泌尿病理学会活检分级、ESUR 标准、前列腺特异性抗原、cT、前列腺体积和包膜接触长度被纳入 EPE-RM。EPE-RM 的校准良好(误差 0.018)。EPE-RM 的 ROC 曲线下面积大于 cT(0.66)、纪念斯隆凯特琳癌症中心列线图(0.73)、Steuber 列线图(0.70)、新型临床列线图(0.79)和 ESUR 分类(0.81)。基于 LR 和 Vuong 检验,EPE-RM 的模型拟合明显优于 cT、所有临床模型和单独的 ESUR 分类(p<0.001)。局限性包括单中心设计和 MRI 专家阅读。

结论

该新的 EPE-RM 结合了临床和 MRI 参数,其性能优于当代临床 RM 和 MRI 预测因子,因此可提供准确的前列腺癌侧特异性 EPE 术前个体化风险分层。

患者总结

使用磁共振成像和临床参数可以准确预测前列腺癌的前列腺外延伸。这种新的风险模型优于磁共振成像和临床预测因子,在计划神经保留性根治性前列腺切除术时可能有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验