Suppr超能文献

多参数磁共振成像对临床列线图预测前列腺癌不良病理的增值作用。

Added Value of Multiparametric Magnetic Resonance Imaging to Clinical Nomograms for Predicting Adverse Pathology in Prostate Cancer.

机构信息

Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.

Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany.

出版信息

J Urol. 2018 Nov;200(5):1041-1047. doi: 10.1016/j.juro.2018.05.094. Epub 2018 May 29.

Abstract

PURPOSE

We examined the additional value of preoperative prostate multiparametric magnetic resonance imaging and transrectal ultrasound/multiparametric magnetic resonance imaging fusion guided targeted biopsy when performed in combination with clinical nomograms to predict adverse pathology at radical prostatectomy.

MATERIALS AND METHODS

We identified all patients who underwent 3 Tesla multiparametric magnetic resonance imaging prior to fusion biopsy and radical prostatectomy. The Partin and the MSKCC (Memorial Sloan Kettering Cancer Center) preradical prostatectomy nomograms were applied to estimate the probability of organ confined disease, extraprostatic extension, seminal vesicle invasion and lymph node involvement using transrectal ultrasound guided systematic biopsy and transrectal ultrasound/multiparametric magnetic resonance imaging fusion guided targeted biopsy Gleason scores. With radical prostatectomy pathology as the gold standard we developed multivariable logistic regression models based on these nomograms before and after adding multiparametric magnetic resonance imaging to assess any additional predictive ability.

RESULTS

A total of 532 patients were included in study. When multiparametric magnetic resonance imaging findings were added to the systematic biopsy based MSKCC nomogram, the AUC increased by 0.10 for organ confined disease (p <0.001), 0.10 for extraprostatic extension (p = 0.003), 0.09 for seminal vesicle invasion (p = 0.011) and 0.06 for lymph node involvement (p = 0.120). Using Gleason scores derived from targeted biopsy compared to systematic biopsy provided an additional predictive value of organ confined disease (Δ AUC 0.07, p = 0.003) and extraprostatic extension (Δ AUC 0.07, p = 0.048) at radical prostatectomy with the MSKCC nomogram. Similar results were obtained using the Partin nomogram.

CONCLUSIONS

Magnetic resonance imaging alone or in addition to standard clinical nomograms provides significant additional predictive ability of adverse pathology at the time of radical prostatectomy. This information can be greatly beneficial to urologists for preoperative planning and for counseling patients regarding the risks of future therapy.

摘要

目的

我们研究了术前前列腺多参数磁共振成像和经直肠超声/多参数磁共振成像融合引导靶向活检的附加价值,当与临床列线图联合用于预测根治性前列腺切除术前的不良病理时。

材料与方法

我们确定了所有在融合活检和根治性前列腺切除术前接受 3T 多参数磁共振成像的患者。应用 Partin 和 MSKCC(纪念斯隆凯特琳癌症中心)前列腺癌根治术前列线图,使用经直肠超声引导系统活检和经直肠超声/多参数磁共振成像融合引导靶向活检 Gleason 评分,估计器官局限性疾病、前列腺外延伸、精囊侵犯和淋巴结受累的概率。以根治性前列腺切除术病理为金标准,我们在加入多参数磁共振成像前后基于这些列线图建立多变量逻辑回归模型,以评估任何附加的预测能力。

结果

共有 532 例患者纳入研究。当将多参数磁共振成像结果添加到基于系统活检的 MSKCC 列线图中时,AUC 对器官局限性疾病的预测增加了 0.10(p<0.001),对前列腺外延伸的预测增加了 0.10(p=0.003),对精囊侵犯的预测增加了 0.09(p=0.011),对淋巴结受累的预测增加了 0.06(p=0.120)。与系统活检相比,靶向活检的 Gleason 评分提供了器官局限性疾病(Δ AUC 0.07,p=0.003)和前列腺外延伸(Δ AUC 0.07,p=0.048)的额外预测价值,MSKCC 列线图。使用 Partin 列线图也得到了类似的结果。

结论

磁共振成像单独或与标准临床列线图联合使用,可显著提高根治性前列腺切除术前不良病理的预测能力。这些信息可以极大地帮助泌尿科医生进行术前规划,并为患者提供关于未来治疗风险的咨询。

相似文献

引用本文的文献

1
Target Volume Optimization for Localized Prostate Cancer.局限性前列腺癌的靶区优化。
Pract Radiat Oncol. 2024 Nov-Dec;14(6):522-540. doi: 10.1016/j.prro.2024.06.006. Epub 2024 Jul 15.
5
Prostate Cancer Local Staging with Magnetic Resonance Imaging.前列腺癌的磁共振成像局部分期。
Radiol Clin North Am. 2024 Jan;62(1):93-108. doi: 10.1016/j.rcl.2023.06.010. Epub 2023 Aug 21.

本文引用的文献

3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验