Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16801.
Materials Research Institute, The Pennsylvania State University, University Park, PA 16801.
Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):E11741-E11750. doi: 10.1073/pnas.1813000115. Epub 2018 Nov 26.
A comprehensive understanding of the key microenvironmental signals regulating bone regeneration is pivotal for the effective design of bioinspired orthopedic materials. Here, we identified citrate as an osteopromotive factor and revealed its metabonegenic role in mediating citrate metabolism and its downstream effects on the osteogenic differentiation of human mesenchymal stem cells (hMSCs). Our studies show that extracellular citrate uptake through solute carrier family 13, member 5 (SLC13a5) supports osteogenic differentiation via regulation of energy-producing metabolic pathways, leading to elevated cell energy status that fuels the high metabolic demands of hMSC osteodifferentiation. We next identified citrate and phosphoserine (PSer) as a synergistic pair in polymeric design, exhibiting concerted action not only in metabonegenic potential for orthopedic regeneration but also in facile reactivity in a fluorescent system for materials tracking and imaging. We designed a citrate/phosphoserine-based photoluminescent biodegradable polymer (BPLP-PSer), which was fabricated into BPLP-PSer/hydroxyapatite composite microparticulate scaffolds that demonstrated significant improvements in bone regeneration and tissue response in rat femoral-condyle and cranial-defect models. We believe that the present study may inspire the development of new generations of biomimetic biomaterials that better recapitulate the metabolic microenvironments of stem cells to meet the dynamic needs of cellular growth, differentiation, and maturation for use in tissue engineering.
全面了解调节骨再生的关键微环境信号对于有效设计仿生骨科材料至关重要。在这里,我们将柠檬酸鉴定为一种成骨促进因子,并揭示了其在代谢骨生成中调节柠檬酸代谢及其对人骨髓间充质干细胞(hMSC)成骨分化的下游影响的作用。我们的研究表明,通过溶质载体家族 13,成员 5(SLC13a5)摄取细胞外柠檬酸通过调节产生能量的代谢途径支持成骨分化,导致细胞能量状态升高,为 hMSC 成骨分化的高代谢需求提供燃料。接下来,我们确定了柠檬酸和磷酸丝氨酸(PSer)在聚合物设计中的协同作用,它们不仅在骨再生的代谢骨生成潜力方面表现出协同作用,而且在荧光系统中的反应性也很容易,可用于材料跟踪和成像。我们设计了一种基于柠檬酸/磷酸丝氨酸的光致发光可生物降解聚合物(BPLP-PSer),并将其制成 BPLP-PSer/羟基磷灰石复合微颗粒支架,在大鼠股骨髁和颅缺损模型中显著改善了骨再生和组织反应。我们相信,本研究可能会激发新一代仿生生物材料的开发,更好地模拟干细胞的代谢微环境,以满足细胞生长、分化和成熟的动态需求,用于组织工程。