Biomedicine Engineering Research Centre, Kunming Medical University, Kunming 650500, Yunnan, China.
Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
Acta Biomater. 2019 Jul 15;93:180-191. doi: 10.1016/j.actbio.2019.03.050. Epub 2019 Mar 27.
The design and development of bioactive materials that are inherently conducive for osteointegration and bone regeneration with tunable mechanical properties and degradation remains a challenge. Herein, we report the development of a new class of citrate-based materials with glycerophosphate salts, β-glycerophosphate disodium (β-GP-Na) and glycerophosphate calcium (GP-Ca), incorporated through a simple and convenient one-pot condensation reaction, which might address the above challenge in the search of suitable orthopedic biomaterials. Tensile strength of the resultant poly (octamethylene citrate glycerophosphate), POC-βGP-Na and POC-GP-Ca, was as high as 28.2 ± 2.44 MPa and 22.76 ± 1.06 MPa, respectively. The initial modulus ranged from 5.28 ± 0.56 MPa to 256.44 ± 22.88 MPa. The mechanical properties and degradation rate of POC-GP could be controlled by varying the type of salts, and the feeding ratio of salts introduced. Particularly, POC-GP-Ca demonstrated better cytocompatibility and the corresponding composite POC-GP-Ca/hydroxyapatite (HA) also elicited improved osteogenic differentiation of human mesenchymal stem cells (hMSCs) in vitro, as compared to POC-βGP-Na/HA and POC/HA. The superior in-vivo performance of POC-GP-Ca/HA microparticle scaffolds in promoting bone regeneration over POC-βGP-Na/HA and POC/HA was further confirmed in a rabbit femoral condyle defect model. Taken together, the tunability of mechanical properties and degradation rates, together with the osteopromotive nature of POC-GP polymers make these materials, especially POC-GP-Ca well suited for bone tissue engineering applications. STATEMENT OF SIGNIFICANCE: The design and development of bioactive materials that are inherently conducive for osteointegration and bone regeneration with tunable mechanical properties and degradation remains a challenge. Herein, we report the development of a new class of citrate-based materials with glycerophosphate salts, β-glycerophosphate disodium (β-GPNa) and glycerophosphate calcium (GPCa), incorporated through a simple and convenient one-pot condensation reaction. The resultant POC-GP polymers showed significantly improved mechanical property and tunable degradation rate. Within the formulation investigated, POC-GPCa/HA composite further demonstrated better bioactivity in favoring osteogenic differentiation of hMSCs in vitro and promoted bone regeneration in rabbit femoral condyle defects. The development of POC-GP expands the repertoire of the well-recognized citrate-based biomaterials to meet the ever-increasing needs for functional biomaterials in tissue engineering and other biomedical applications.
具有骨整合和骨再生能力、可调机械性能和降解率的生物活性材料的设计和开发仍然是一个挑战。在此,我们报告了一类新的基于柠檬酸的材料的开发,其中包含甘油磷酸盐盐,即β-甘油磷酸二钠(β-GP-Na)和甘油磷酸钙(GP-Ca),通过简便的一锅缩合反应引入,这可能解决了在寻找合适的骨科生物材料时的上述挑战。所得的聚(辛烷二醇柠檬酸甘油磷酸盐)(POC-βGP-Na)和 POC-GP-Ca 的拉伸强度分别高达 28.2±2.44 MPa 和 22.76±1.06 MPa。初始模量范围为 5.28±0.56 MPa 至 256.44±22.88 MPa。通过改变盐的类型和盐的进料比,可以控制 POC-GP 的机械性能和降解速率。特别是,与 POC-βGP-Na/HA 和 POC/HA 相比,POC-GP-Ca 表现出更好的细胞相容性,相应的 POC-GP-Ca/羟基磷灰石(HA)复合材料也在体外诱导人间充质干细胞(hMSCs)的成骨分化得到了改善。在兔股骨髁缺损模型中进一步证实了 POC-GP-Ca/HA 微球支架在促进骨再生方面优于 POC-βGP-Na/HA 和 POC/HA 的体内性能。综上所述,POC-GP 聚合物的机械性能和降解速率的可调节性以及促进成骨的特性使这些材料,尤其是 POC-GP-Ca 非常适合骨组织工程应用。
具有骨整合和骨再生能力、可调机械性能和降解率的生物活性材料的设计和开发仍然是一个挑战。在此,我们报告了一类新的基于柠檬酸的材料的开发,其中包含甘油磷酸盐盐,即β-甘油磷酸二钠(β-GP-Na)和甘油磷酸钙(GP-Ca),通过简便的一锅缩合反应引入。所得的 POC-GP 聚合物表现出显著改善的机械性能和可调降解率。在所研究的配方中,POC-GPCa/HA 复合材料在体外促进 hMSCs 成骨分化方面表现出更好的生物活性,并促进了兔股骨髁缺损的骨再生。POC-GP 的开发扩展了广为人知的基于柠檬酸的生物材料的范围,以满足组织工程和其他生物医学应用中对功能性生物材料的日益增长的需求。