Wang Shaoyang, Li Fei, Easley Alexandra D, Lutkenhaus Jodie L
Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA.
Nat Mater. 2019 Jan;18(1):69-75. doi: 10.1038/s41563-018-0215-1. Epub 2018 Nov 26.
Organic radical polymers for batteries represent some of the fastest-charging redox active materials available. Electron transport and charge storage must be accompanied by ion transport and doping for charge neutrality, but the nature of this process in organic radical polymers is not well understood. This is difficult to intuitively predict because the pendant radical group distinguishes organic radical polymers from conjugated, charged or polar polymers. Here we show for the first time a quantitative view of in situ ion transport and doping in organic radical polymers during the redox process. Two modes dominate: doping by lithium ion expulsion and doping by anion uptake. The dominance of one mode over the other is controlled by anion type, electrolyte concentration and timescale. These results apply in any scenario in which electrolyte is in contact with a non-conjugated redox active polymer and present a means of quantifying doping effects.
用于电池的有机自由基聚合物是一些充电速度最快的氧化还原活性材料。电子传输和电荷存储必须伴随着离子传输和掺杂以实现电荷中性,但有机自由基聚合物中这一过程的本质尚未得到很好的理解。这很难直观地预测,因为侧基自由基使有机自由基聚合物区别于共轭聚合物、带电聚合物或极性聚合物。在此,我们首次展示了氧化还原过程中有机自由基聚合物原位离子传输和掺杂的定量观点。两种模式占主导:通过锂离子排出进行掺杂和通过阴离子摄取进行掺杂。一种模式相对于另一种模式的主导地位由阴离子类型、电解质浓度和时间尺度控制。这些结果适用于电解质与非共轭氧化还原活性聚合物接触的任何情况,并提供了一种量化掺杂效应的方法。