Haney Megan M, Hamad Ali, Leary Emily, Bunyak Filiz, Lever Teresa E
Department of Veterinary Pathobiology , University of Missouri, Columbia, Missouri, U.S.A.
Department of Electrical Engineering and Computer Science , University of Missouri, Columbia, Missouri, U.S.A.
Laryngoscope. 2019 Jul;129(7):E247-E254. doi: 10.1002/lary.27609. Epub 2018 Nov 26.
OBJECTIVES/HYPOTHESIS: The goal of this study was to objectively examine vocal fold (VF) motion dynamics after iatrogenic recurrent laryngeal nerve (RLN) injury in a mouse surgical model. Furthermore, we sought to identify a method of inducing injury with a consistent recovery pattern from which we can begin to evaluate spontaneous recovery and test therapeutic interventions.
Animal model.
The right RLN in C57BL/6J mice was crushed for 30 seconds using an aneurysm clip with 1.3-N closing force. Transoral laryngoscopy enabled visualization of VF movement prior to surgery, immediately post-crush, and at two endpoints: 3 days (n = 5) and 2 weeks (n = 5). VF motion was quantified with our custom motion-analysis software. At each endpoint, RLN samples were collected for transmission electron microscopy for correlation with VF motion dynamics.
Our VF tracking software permitted automated quantification of several measures of VF dynamics, such as range and frequency of motion. By 2 weeks post-injury, the frequency of VF movement on the right (injured) side equaled the left, yet range of motion only partially recovered. These objective outcome measures enabled detection of VF dysfunction that persisted at 2 weeks post-crush. Transmission electron microscopy images revealed RLN degeneration 3 days post-crush and partial regeneration at 2 weeks, consistent with functional results obtained with automated VF tracking.
Our motion-analysis software provides novel objective, quantitative, and repeatable metrics to detect and describe subtle VF dysfunction in mice that corresponds with underlying RLN degeneration and recovery. Adaptation of our tracking software for use with human patients is underway.
NA Laryngoscope, 129:E247-E254, 2019.
目的/假设:本研究的目的是在小鼠手术模型中客观地检查医源性喉返神经(RLN)损伤后的声带(VF)运动动力学。此外,我们试图确定一种能导致具有一致恢复模式的损伤的方法,以便我们能够开始评估自发恢复情况并测试治疗干预措施。
动物模型。
使用闭合力为1.3 N的动脉瘤夹将C57BL / 6J小鼠的右侧RLN夹闭30秒。经口喉镜检查可在手术前、夹闭后即刻以及两个时间点(3天,n = 5;2周,n = 5)观察VF运动。使用我们定制的运动分析软件对VF运动进行量化。在每个时间点,收集RLN样本用于透射电子显微镜检查,以与VF运动动力学进行关联。
我们的VF跟踪软件允许自动量化VF动力学的多项指标,如运动范围和频率。损伤后2周,右侧(损伤)侧VF运动频率与左侧相等,但运动范围仅部分恢复。这些客观的结果指标能够检测到夹闭后2周仍持续存在的VF功能障碍。透射电子显微镜图像显示夹闭后3天RLN发生变性,2周时部分再生,这与自动VF跟踪获得的功能结果一致。
我们的运动分析软件提供了新颖、客观、定量且可重复的指标,用于检测和描述小鼠中与潜在RLN变性和恢复相对应的细微VF功能障碍。我们正在对跟踪软件进行改编,以便用于人类患者。
NA 喉镜,129:E247 - E254,2019年。