文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磁共振成像扫描、简易精神状态检查表和逻辑记忆测试的深度学习模型融合可提高对轻度认知障碍的诊断能力。

Fusion of deep learning models of MRI scans, Mini-Mental State Examination, and logical memory test enhances diagnosis of mild cognitive impairment.

作者信息

Qiu Shangran, Chang Gary H, Panagia Marcello, Gopal Deepa M, Au Rhoda, Kolachalama Vijaya B

机构信息

Department of Physics, College of Arts and Sciences, Boston University, Boston, MA, USA.

Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA.

出版信息

Alzheimers Dement (Amst). 2018 Sep 28;10:737-749. doi: 10.1016/j.dadm.2018.08.013. eCollection 2018.


DOI:10.1016/j.dadm.2018.08.013
PMID:30480079
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6240705/
Abstract

INTRODUCTION: Our aim was to investigate if the accuracy of diagnosing mild cognitive impairment (MCI) using the Mini-Mental State Examination (MMSE) and logical memory (LM) test could be enhanced by adding MRI data. METHODS: Data of individuals with normal cognition and MCI were obtained from the National Alzheimer Coordinating Center database (n = 386). Deep learning models trained on MRI slices were combined to generate a fused MRI model using different voting techniques to predict normal cognition versus MCI. Two multilayer perceptron (MLP) models were developed with MMSE and LM test results. Finally, the fused MRI model and the MLP models were combined using majority voting. RESULTS: The fusion model was superior to the individual models alone and achieved an overall accuracy of 90.9%. DISCUSSION: This study is a proof of principle that multimodal fusion of models developed using MRI scans, MMSE, and LM test data is feasible and can better predict MCI.

摘要

引言:我们的目的是研究通过添加MRI数据是否可以提高使用简易精神状态检查表(MMSE)和逻辑记忆(LM)测试诊断轻度认知障碍(MCI)的准确性。 方法:从国家阿尔茨海默病协调中心数据库中获取认知正常和MCI个体的数据(n = 386)。在MRI切片上训练的深度学习模型被组合起来,使用不同的投票技术生成一个融合MRI模型,以预测正常认知与MCI。利用MMSE和LM测试结果开发了两个多层感知器(MLP)模型。最后,使用多数投票法将融合MRI模型和MLP模型进行组合。 结果:融合模型优于单独的个体模型,总体准确率达到90.9%。 讨论:本研究证明了一个原理,即使用MRI扫描、MMSE和LM测试数据开发的模型进行多模态融合是可行的,并且可以更好地预测MCI。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53cf/6240705/bbeb3fa2d6fd/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53cf/6240705/0682667fc588/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53cf/6240705/6b456989979f/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53cf/6240705/effbc5e6a108/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53cf/6240705/0f42bb811a7c/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53cf/6240705/590ba5a043a2/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53cf/6240705/bbeb3fa2d6fd/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53cf/6240705/0682667fc588/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53cf/6240705/6b456989979f/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53cf/6240705/effbc5e6a108/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53cf/6240705/0f42bb811a7c/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53cf/6240705/590ba5a043a2/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53cf/6240705/bbeb3fa2d6fd/gr6.jpg

相似文献

[1]
Fusion of deep learning models of MRI scans, Mini-Mental State Examination, and logical memory test enhances diagnosis of mild cognitive impairment.

Alzheimers Dement (Amst). 2018-9-28

[2]
Mini Mental State Examination and Logical Memory scores for entry into Alzheimer's disease trials.

Alzheimers Res Ther. 2016-2-22

[3]
Ensemble of convolutional neural networks and multilayer perceptron for the diagnosis of mild cognitive impairment and Alzheimer's disease.

Med Phys. 2023-1

[4]
Comparison of the short test of mental status and the mini-mental state examination in mild cognitive impairment.

Arch Neurol. 2003-12

[5]
Mini-Mental State Examination (MMSE) for the early detection of dementia in people with mild cognitive impairment (MCI).

Cochrane Database Syst Rev. 2021-7-27

[6]
Machine Learning Model for Mild Cognitive Impairment Stage Based on Gait and MRI Images.

Brain Sci. 2024-5-9

[7]
Mini-Mental State Examination (MMSE) for the detection of Alzheimer's disease and other dementias in people with mild cognitive impairment (MCI).

Cochrane Database Syst Rev. 2015-3-5

[8]
Comparing a pre-defined versus deep learning approach for extracting brain atrophy patterns to predict cognitive decline due to Alzheimer's disease in patients with mild cognitive symptoms.

Alzheimers Res Ther. 2024-3-19

[9]
Digital Clock and Recall is superior to the Mini-Mental State Examination for the detection of mild cognitive impairment and mild dementia.

Alzheimers Res Ther. 2024-1-2

[10]

2013-11

引用本文的文献

[1]
A novel MRI-based deep learning-radiomics framework for evaluating cerebrospinal fluid signal in central nervous system infection.

Front Med (Lausanne). 2025-8-20

[2]
Prediction of Mini-Mental State Examination Scores for Cognitive Impairment and Machine Learning Analysis of Oral Health and Demographic Data Among Individuals Older Than 60 Years: Cross-Sectional Study.

JMIR Med Inform. 2025-8-25

[3]
An empirical study of using radiology reports and images to improve intensive care unit mortality prediction.

JAMIA Open. 2025-2-20

[4]
HiMAL: Multimodal Hierarchical Multi-task Auxiliary Learning framework for predicting Alzheimer's disease progression.

JAMIA Open. 2024-9-17

[5]
Alzheimer's disease detection using data fusion with a deep supervised encoder.

Front Dement. 2024

[6]
Orchestrating explainable artificial intelligence for multimodal and longitudinal data in medical imaging.

NPJ Digit Med. 2024-7-22

[7]
Machine learning with multimodal neuroimaging data to classify stages of Alzheimer's disease: a systematic review and meta-analysis.

Cogn Neurodyn. 2024-6

[8]
Disease-driven domain generalization for neuroimaging-based assessment of Alzheimer's disease.

Hum Brain Mapp. 2024-6-1

[9]
Multimodality Fusion Strategies in Eye Disease Diagnosis.

J Imaging Inform Med. 2024-10

[10]
Deep learning based joint fusion approach to exploit anatomical and functional brain information in autism spectrum disorders.

Brain Inform. 2024-1-9

本文引用的文献

[1]
Association of Pathological Fibrosis With Renal Survival Using Deep Neural Networks.

Kidney Int Rep. 2018-1-11

[2]
On the path to 2025: understanding the Alzheimer's disease continuum.

Alzheimers Res Ther. 2017-8-9

[3]
A survey on deep learning in medical image analysis.

Med Image Anal. 2017-7-26

[4]
Deep Learning in Medical Image Analysis.

Annu Rev Biomed Eng. 2017-6-21

[5]
Dermatologist-level classification of skin cancer with deep neural networks.

Nature. 2017-2-2

[6]
Multimodal Neuroimaging Feature Learning With Multimodal Stacked Deep Polynomial Networks for Diagnosis of Alzheimer's Disease.

IEEE J Biomed Health Inform. 2017-1-19

[7]
Total Cerebral Small Vessel Disease MRI Score Is Associated with Cognitive Decline in Executive Function in Patients with Hypertension.

Front Aging Neurosci. 2016-12-12

[8]
Machine learning approaches in medical image analysis: From detection to diagnosis.

Med Image Anal. 2016-6-23

[9]
MRI Markers Predict Cognitive Decline Assessed by Telephone Interview: The Northern Manhattan Study.

Alzheimer Dis Assoc Disord. 2017

[10]
Discriminative Learning for Alzheimer's Disease Diagnosis via Canonical Correlation Analysis and Multimodal Fusion.

Front Aging Neurosci. 2016-5-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索