Department of Computer Science, Boston University, Boston, Massachusetts, USA.
Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA.
Hum Brain Mapp. 2024 Jun 1;45(8):e26707. doi: 10.1002/hbm.26707.
Development of deep learning models to evaluate structural brain changes caused by cognitive impairment in MRI scans holds significant translational value. The efficacy of these models often encounters challenges due to variabilities arising from different data generation protocols, imaging equipment, radiological artifacts, and shifts in demographic distributions. Domain generalization (DG) techniques show promise in addressing these challenges by enabling the model to learn from one or more source domains and apply this knowledge to new, unseen target domains. Here we present a framework that utilizes model interpretability to enhance the generalizability of classification models across various cohorts. We used MRI scans and clinical diagnoses from four independent cohorts: Alzheimer's Disease Neuroimaging Initiative (ADNI, n = 1821), the Framingham Heart Study (FHS, n = 304), the Australian Imaging Biomarkers & Lifestyle Study of Ageing (AIBL, n = 661), and the National Alzheimer's Coordinating Center (NACC, n = 4647). With this data, we trained a deep neural network to focus on areas of the brain identified as relevant to the disease for model training. Our approach involved training a classifier to differentiate between structural neurodegeneration in individuals with normal cognition (NC), mild cognitive impairment (MCI), and dementia due to Alzheimer's disease (AD). This was achieved by aligning class-wise attention with a unified visual saliency prior, which was computed offline for each class using all the training data. Our method not only competes with state-of-the-art approaches but also shows improved correlation with postmortem histology. This alignment with the gold standard evidence is a significant step towards validating the effectiveness of DG frameworks, paving the way for their broader application in the field.
开发深度学习模型以评估 MRI 扫描中认知障碍引起的结构性脑变化具有重要的转化价值。这些模型的效果常常受到各种挑战的影响,例如不同的数据生成协议、成像设备、放射伪影以及人口分布的变化。领域泛化 (DG) 技术通过使模型能够从一个或多个源领域中学习并将这些知识应用于新的、未见的目标领域,从而有希望解决这些挑战。在这里,我们提出了一个利用模型可解释性来增强分类模型在各种队列中通用性的框架。我们使用了来自四个独立队列的 MRI 扫描和临床诊断:阿尔茨海默病神经影像学倡议 (ADNI,n=1821)、弗雷明汉心脏研究 (FHS,n=304)、澳大利亚成像生物标志物和生活方式衰老研究 (AIBL,n=661) 和国家阿尔茨海默病协调中心 (NACC,n=4647)。有了这些数据,我们训练了一个深度神经网络来关注被认为与疾病相关的大脑区域,以进行模型训练。我们的方法涉及训练一个分类器来区分具有正常认知 (NC)、轻度认知障碍 (MCI) 和阿尔茨海默病引起的痴呆 (AD) 的个体的结构性神经退行性变。这是通过将类别的注意力与统一的视觉显著性先验对齐来实现的,该先验是使用所有训练数据离线为每个类计算的。我们的方法不仅与最先进的方法竞争,而且与死后组织学的相关性也得到了提高。这种与黄金标准证据的一致性是验证 DG 框架有效性的重要一步,为其在该领域的更广泛应用铺平了道路。
Hum Brain Mapp. 2024-6-1
Int J Neural Syst. 2020-6
Cochrane Database Syst Rev. 2020-3-2
IEEE Trans Pattern Anal Mach Intell. 2023-4
Nat Commun. 2022-6-20
Med Image Anal. 2021-1
Med Image Comput Comput Assist Interv. 2019-10
IEEE Trans Med Imaging. 2020-7
IEEE Trans Biomed Eng. 2015-4
Clin Geriatr Med. 2014-8