Suppr超能文献

一种基于磁共振成像的新型深度学习放射组学框架,用于评估中枢神经系统感染中的脑脊液信号。

A novel MRI-based deep learning-radiomics framework for evaluating cerebrospinal fluid signal in central nervous system infection.

作者信息

Cüce Ferhat, Tulum Gökalp, Isik Muhammed Ikbal, Jalili Marziye, Girgin Güven, Karadaş Ömer, Baş Niray, Özcan Berza, Savaşci Ümit, Şakir Sena, Karadaş Akçay Övünç, Teomete Eda, Osman Onur, Rasheed Jawad

机构信息

Department of Radiology, Health Science University, Gulhane Training, and Research Hospital, Ankara, Türkiye.

Department of Electrical and Electronics Engineering, Topkapi University, Istanbul, Türkiye.

出版信息

Front Med (Lausanne). 2025 Aug 20;12:1659653. doi: 10.3389/fmed.2025.1659653. eCollection 2025.

Abstract

INTRODUCTION

Accurate and timely diagnosis of central nervous system infections (CNSIs) is critical, yet current gold-standard techniques like lumbar puncture (LP) remain invasive and prone to delay. This study proposes a novel noninvasive framework integrating handcrafted radiomic features and deep learning (DL) to identify cerebrospinal fluid (CSF) alterations on magnetic resonance imaging (MRI) in patients with acute CNSI.

METHODS

Fifty-two patients diagnosed with acute CNSI who underwent LP and brain MRI within 48 h of hospital admission were retrospectively analyzed alongside 52 control subjects with normal neurological findings. CSF-related signals were segmented from the ventricular system and sub-lentiform nucleus parenchyma, including perivascular spaces (PVSs), using semi-automated methods on axial T2-weighted images. Two hybrid models (DenseASPP-RadFusion and MobileASPP-RadFusion), fusing radiomics and DL features, were developed and benchmarked against base DL architectures (DenseNet-201 and MobileNet-V3Large) via 5-fold nested cross-validation. Radiomics features were extracted from both original and Laplacian of Gaussian-filtered MRI data.

RESULTS

In the sub-lentiform nucleus parenchyma, the hybrid DenseASPP-RadFusion model achieved superior classification performance (accuracy: 78.57 ± 4.76%, precision: 84.09 ± 3.31%, F1-score: 76.12 ± 6.86%), outperforming its corresponding base models. Performance was notably lower in ventricular system analyses across all models. Radiomics features derived from fine-scale filtered images exhibited the highest discriminatory power. A strict, clinically motivated patient-wise classification strategy confirmed the sub-lentiform nucleus region as the most reliable anatomical target for distinguishing infected from non-infected CSF.

DISCUSSION

This study introduces a robust and interpretable MRI-based deep learning-radiomics pipeline for CNSI classification, with promising diagnostic potential. The proposed framework may offer a noninvasive alternative to LP in selected cases, particularly by leveraging CSF signal alterations in PVS-adjacent parenchymal regions. These findings establish a foundation for future multicenter validation and integration into clinical workflows.

摘要

引言

准确及时地诊断中枢神经系统感染(CNSIs)至关重要,但目前的金标准技术如腰椎穿刺(LP)仍然具有侵入性且容易延误。本研究提出了一种新颖的非侵入性框架,该框架整合了手工制作的放射组学特征和深度学习(DL),以识别急性中枢神经系统感染患者磁共振成像(MRI)上的脑脊液(CSF)改变。

方法

回顾性分析了52例确诊为急性中枢神经系统感染且在入院48小时内接受了腰椎穿刺和脑部MRI检查的患者,同时分析了52例神经系统检查结果正常的对照受试者。在轴向T2加权图像上,使用半自动方法从脑室系统和豆状核下实质(包括血管周围间隙(PVSs))中分割出与脑脊液相关的信号。开发了两种融合放射组学和深度学习特征的混合模型(DenseASPP-RadFusion和MobileASPP-RadFusion),并通过5折嵌套交叉验证与基础深度学习架构(DenseNet-201和MobileNet-V3Large)进行基准测试。从原始的和高斯滤波后的拉普拉斯MRI数据中提取放射组学特征。

结果

在豆状核下实质中,混合DenseASPP-RadFusion模型表现出卓越的分类性能(准确率:78.57±4.76%,精确率:84.09±3.31%,F1分数:76.12±6.86%),优于其相应的基础模型。在所有模型的脑室系统分析中,性能明显较低。从精细尺度滤波图像中提取的放射组学特征具有最高的鉴别力。一种严格的、基于临床动机的患者级分类策略证实,豆状核下区域是区分感染性和非感染性脑脊液最可靠的解剖靶点。

讨论

本研究介绍了一种用于中枢神经系统感染分类的强大且可解释的基于MRI的深度学习-放射组学流程,具有可观的诊断潜力。所提出的框架在某些情况下可能为腰椎穿刺提供一种非侵入性替代方法,特别是通过利用血管周围间隙相邻实质区域的脑脊液信号改变。这些发现为未来的多中心验证以及整合到临床工作流程奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ed/12405214/966045fb2c2f/fmed-12-1659653-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验