Department of Bioinformatics and Life Science, Soongsil University, Seoul, Korea.
Functional Genome Institute, PDXen Biosystems Inc., Seoul, Korea.
PLoS One. 2018 Nov 27;13(11):e0207982. doi: 10.1371/journal.pone.0207982. eCollection 2018.
To build a deep learning model to diagnose glaucoma using fundus photography.
Cross sectional case study Subjects, Participants and Controls: A total of 1,542 photos (786 normal controls, 467 advanced glaucoma and 289 early glaucoma patients) were obtained by fundus photography.
The whole dataset of 1,542 images were split into 754 training, 324 validation and 464 test datasets. These datasets were used to construct simple logistic classification and convolutional neural network using Tensorflow. The same datasets were used to fine tune pre-trained GoogleNet Inception v3 model.
The simple logistic classification model showed a training accuracy of 82.9%, validation accuracy of 79.9% and test accuracy of 77.2%. Convolutional neural network achieved accuracy and area under the receiver operating characteristic curve (AUROC) of 92.2% and 0.98 on the training data, 88.6% and 0.95 on the validation data, and 87.9% and 0.94 on the test data. Transfer-learned GoogleNet Inception v3 model achieved accuracy and AUROC of 99.7% and 0.99 on training data, 87.7% and 0.95 on validation data, and 84.5% and 0.93 on test data.
Both advanced and early glaucoma could be correctly detected via machine learning, using only fundus photographs. Our new model that is trained using convolutional neural network is more efficient for the diagnosis of early glaucoma than previously published models.
构建一种使用眼底摄影诊断青光眼的深度学习模型。
横断面病例研究
受试者、参与者和对照:共获得 1542 张眼底照片(786 名正常对照、467 名晚期青光眼和 289 名早期青光眼患者)。
将 1542 张图像的整个数据集分为 754 个训练集、324 个验证集和 464 个测试集。使用 Tensorflow 构建简单逻辑分类和卷积神经网络。使用相同的数据集微调预先训练的 GoogleNet Inception v3 模型。
简单逻辑分类模型在训练中的准确率为 82.9%,验证中的准确率为 79.9%,测试中的准确率为 77.2%。卷积神经网络在训练数据上的准确率和接受者操作特征曲线下的面积(AUROC)分别为 92.2%和 0.98,验证数据分别为 88.6%和 0.95,测试数据分别为 87.9%和 0.94。迁移学习的 GoogleNet Inception v3 模型在训练数据上的准确率和 AUROC 分别为 99.7%和 0.99,验证数据分别为 87.7%和 0.95,测试数据分别为 84.5%和 0.93。
仅通过眼底照片,使用机器学习可以正确检测晚期和早期青光眼。我们使用卷积神经网络训练的新模型在早期青光眼的诊断中比以前发表的模型更有效。