Suppr超能文献

利用深度学习进行视网膜眼底图像的青光眼分析的感兴趣区域定位。

The region of interest localization for glaucoma analysis from retinal fundus image using deep learning.

机构信息

Department of Computer Science and Engineering, Calcutta University Technology Campus, JD-2, Sector-III, Salt Lake, Kolkata 700098, India; Department of Computer Science and Engineering, Academy of Technology, Adisaptagram 712121, West Bengal, India.

Department of Computer Science and Engineering, Academy of Technology, Adisaptagram 712121, West Bengal, India.

出版信息

Comput Methods Programs Biomed. 2018 Oct;165:25-35. doi: 10.1016/j.cmpb.2018.08.003. Epub 2018 Aug 8.

Abstract

BACKGROUND AND OBJECTIVES

Retinal fundus image analysis without manual intervention has been rising as an imperative analytical approach for early detection of eye-related diseases such as glaucoma and diabetic retinopathy. For analysis and detection of Glaucoma and some other disease from retinal image, there is a significant role of predicting the bounding box coordinates of Optic Disc (OD) that acts as a Region of Interest (ROI).

METHODS

We reframe ROI detection as a solitary regression predicament, from image pixel values to ROI coordinates including class probabilities. A Convolution Neural Network (CNN) has trained on full images to predict bounding boxes along with their analogous probabilities and confidence scores. The publically available MESSIDOR and Kaggle datasets have been used to train the network. We adopted various data augmentation techniques to amplify our dataset so that our network becomes less sensitive to noise. From a very high-level perspective, every image is divided into a 13 × 13 grid. Every grid cell envisages 5 bounding boxes along with the corresponding class probability and a confidence score. Before training, the network and the bounding box priors or anchors are initialized using k-means clustering on the original dataset using a distance metric based on Intersection of the Union (IOU) over ground-truth bounding boxes. During training in fact, a sum-squared loss function is used as the prediction's error function. Finally, Non-maximum suppression is applied by the proposed methodology to reach the concluding prediction.

RESULTS

The following projected method accomplish an accuracy of 99.05% and 98.78% on the Kaggle and MESSIDOR test sets for ROI detection. Results of proposed methodology indicates that proposed network is able to perceive ROI in fundus images in 0.0045 s at 25 ms of latency, which is far better than the recent-time and using no handcrafted features.

CONCLUSIONS

The network predicts accurate results even on low-quality images without being biased towards any particular type of image. The network prepared to see more summed up depiction rather than past works in the field. Going by the results, our novel method has better diagnosis of eye diseases in the future in a faster and reliable way.

摘要

背景与目的

视网膜眼底图像分析无需人工干预,已成为青光眼和糖尿病视网膜病变等眼部疾病早期检测的一种强制性分析方法。为了从视网膜图像中分析和检测青光眼和其他一些疾病,预测视盘(OD)的边界框坐标(ROI)起着重要作用。

方法

我们将 ROI 检测重新定义为一个单一的回归问题,从图像像素值到包括类概率的 ROI 坐标。卷积神经网络(CNN)已在全图像上进行训练,以预测边界框及其类似概率和置信度得分。公共 MESSIDOR 和 Kaggle 数据集已用于训练网络。我们采用了各种数据增强技术来放大我们的数据集,以使我们的网络对噪声不那么敏感。从非常高的角度来看,每个图像被分成一个 13×13 的网格。每个网格单元设想 5 个边界框,以及相应的类概率和置信度得分。在训练之前,使用基于交并比(IOU)的距离度量对原始数据集进行 k-means 聚类,对网络和边界框先验或锚点进行初始化。在实际训练中,使用均方误差函数作为预测的误差函数。最后,通过所提出的方法应用非极大值抑制来得到最终的预测。

结果

所提出的方法在 Kaggle 和 MESSIDOR 测试集上的 ROI 检测准确率分别达到 99.05%和 98.78%。该方法的结果表明,所提出的网络能够在 25 毫秒的延迟下以 0.0045 秒的速度感知眼底图像中的 ROI,这比最近的技术和不使用手工特征的方法要好得多。

结论

该网络即使在没有偏见的情况下也能对低质量图像做出准确的预测。该网络准备看到更多的综合描述,而不是过去在该领域的工作。根据结果,我们的新方法在未来能够以更快、更可靠的方式对眼部疾病进行更准确的诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验