Suppr超能文献

建立一个列线图,通过整合分子标志物和肿瘤-淋巴结-转移分期系统来预测肝细胞癌的预后。

Establishment of a Nomogram by Integrating Molecular Markers and Tumor-Node-Metastasis Staging System for Predicting the Prognosis of Hepatocellular Carcinoma.

机构信息

Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.

Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China,

出版信息

Dig Surg. 2019;36(5):426-432. doi: 10.1159/000494219. Epub 2018 Nov 27.

Abstract

AIMS

This study aimed to develop a valuable nomogram by integrating molecular markers and tumor-node-metastasis (TNM) staging system for predicting the long-term outcome of patients with hepatocellular carcinoma (HCC).

METHODS

The gene expression profiles of HCC patients undergoing liver resection were obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. One hundred and ninety-nine patients from TCGA and 94 patients from GEO were selected to be part of the training cohort and validation cohort respectively. Univariate and multivariate cox analyses were performed to identify genes with independent prognostic values for overall survival (OS) of HCC patients in training cohort. Risk score was calculated based on the coefficients and Z-score of 3 genes for each patient. The nomogram was developed based on the risk score and TNM staging system. Discrimination and predictive accuracy of the nomogram were measured by using the concordance index (C-index) and calibration curve. The efficacy of the nomogram was tested in the external validation cohort.

RESULTS

Univariate and multivariate cox analyses revealed that EXT2 (p = 0.035, hazard ratio 13.412), ETV5 (p = 0.010, hazard ratio 4.325), and CHODL (p < 0.001, hazard ratio 6.286) were independent prognostic factors and chosen for further nomogram establishment. The C-index of the nomogram for predicting the OS in the training cohort was superior to that of the TNM staging system (0.77 vs. 0.64, p < 0.01). The calibration curve of predicted 1-, 3-, and 5-year OS showed satisfactory accuracy. The external validation cohort showed good performance of comprehensive nomogram as well.

CONCLUSION

The novel nomogram by integrating the molecular markers and TNM staging system has better performance in predicting long-term prognosis in HCC patients than the TNM staging system alone.

摘要

目的

本研究旨在通过整合分子标志物和肿瘤-淋巴结-转移(TNM)分期系统,为预测肝细胞癌(HCC)患者的长期预后,开发一个有价值的列线图。

方法

从癌症基因组图谱(TCGA)和基因表达综合(GEO)数据库中获取接受肝切除术的 HCC 患者的基因表达谱。将 TCGA 中的 199 例患者和 GEO 中的 94 例患者分别纳入训练队列和验证队列。对训练队列中 HCC 患者总生存期(OS)的独立预后基因进行单因素和多因素 Cox 分析。基于每个患者的 3 个基因的系数和 Z 分数,计算风险评分。基于风险评分和 TNM 分期系统开发列线图。使用一致性指数(C 指数)和校准曲线来衡量列线图的区分度和预测准确性。在外部验证队列中检验列线图的疗效。

结果

单因素和多因素 Cox 分析显示,EXT2(p = 0.035,风险比 13.412)、ETV5(p = 0.010,风险比 4.325)和 CHODL(p < 0.001,风险比 6.286)是独立的预后因素,被选入进一步的列线图建立。训练队列中预测 OS 的列线图的 C 指数优于 TNM 分期系统(0.77 比 0.64,p < 0.01)。预测 1、3 和 5 年 OS 的校准曲线显示出较好的准确性。外部验证队列也显示了综合列线图的良好性能。

结论

整合分子标志物和 TNM 分期系统的新列线图在预测 HCC 患者的长期预后方面优于单独的 TNM 分期系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验