Suppr超能文献

基于微血管侵犯和血液学生物标志物的新型预后列线图预测肝细胞癌患者的生存结局。

A novel prognostic nomogram based on microvascular invasion and hematological biomarkers to predict survival outcome for hepatocellular carcinoma patients.

机构信息

Department of Gastroenterology, The Third People's Hospital of Shenzhen, Shenzhen, China.

Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.

出版信息

Surg Oncol. 2020 Jun;33:51-57. doi: 10.1016/j.suronc.2020.01.006. Epub 2020 Jan 11.

Abstract

PURPOSE

This study aimed to develop and validate a nomogram for overall survival (OS) prediction in which combine clinical characteristics and hematological biomarkers in patients with hepatocellular carcinoma (HCC).

METHODS

We performed a retrospective analysis of 807 HCC patients. All the clinical data of these patients were collected through electronic medical record (EMR). The independent predictive variables were identified by cox regression analysis. We tested the accuracy of the nomograms by discrimination and calibration, and then plotted decision curves to assess the benefits of nomogram-assisted decisions in a clinical context, and compared with the TNM staging systems and microvascular invasion (MVI) on HCC prognosis.

RESULTS

The primary cohort consisted of 545 patients with clinicopathologically diagnosed with HCC from 2008 to 2013, while 262 patients from 2014 to 2016 in external validation cohort. Variables included in the nomograms were TNM Stage, microvascular invasion (MVI), alpha fetoprotein (AFP), platelet to lymphocyte ratio (PLR) and prothrombin time (PT). The C-index of nomogram was 0.768, which was superior than the C-index of TNM Stage (0.660, P < 0.001) and MVI(0.664, P < 0.001) alone in the primary cohort. In the validation cohort, the models had a C-index of 0.845, and were also statistically higher when compared to C-index values for TNM Stage (0.687, P < 0.001) and MVI(0.684, P < 0.001). Calibration curves showed adequate calibration of predicted and reported OS prediction throughout the range of HCC outcomes. Decision curve analysis demonstrated that the nomogram was clinically useful than the TNM Stage and MVI alone. Moreover, patients were divided into three distinct risk groups for OS by the nomogram: low risk group, middle risk group and a high risk group, respectively.

CONCLUSION

The nomogram presents more accurate and useful prognostic power, which could be used to predict OS for patients with HCC.

摘要

目的

本研究旨在开发和验证一种用于预测肝细胞癌(HCC)患者总生存期(OS)的列线图,该列线图结合了临床特征和血液学生物标志物。

方法

我们对 807 例 HCC 患者进行了回顾性分析。通过电子病历(EMR)收集所有患者的临床数据。通过 cox 回归分析确定独立的预测变量。我们通过区分度和校准来测试列线图的准确性,然后绘制决策曲线,以评估列线图辅助决策在临床环境中的获益,并与 TNM 分期系统和微血管侵犯(MVI)对 HCC 预后的影响进行比较。

结果

主要队列包括 545 例 2008 年至 2013 年经临床病理诊断为 HCC 的患者,外部验证队列包括 2014 年至 2016 年的 262 例患者。列线图中的变量包括 TNM 分期、微血管侵犯(MVI)、甲胎蛋白(AFP)、血小板与淋巴细胞比值(PLR)和凝血酶原时间(PT)。列线图的 C 指数为 0.768,优于主要队列中 TNM 分期(0.660,P<0.001)和 MVI(0.664,P<0.001)的 C 指数。在验证队列中,模型的 C 指数为 0.845,与 TNM 分期(0.687,P<0.001)和 MVI(0.684,P<0.001)的 C 指数值相比,也具有统计学意义。校准曲线表明,在 HCC 结局的整个范围内,预测和报告的 OS 预测均具有足够的校准。决策曲线分析表明,该列线图比 TNM 分期和 MVI 单独使用更具临床意义。此外,该列线图还可将患者分为低危组、中危组和高危组三个不同的 OS 风险组。

结论

该列线图提供了更准确和有用的预后能力,可用于预测 HCC 患者的 OS。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验