Suppr超能文献

体外和体内具有不同磁性的植入材料上磁性纳米多孔硅纳米粒子的积累。

In vitro and in vivo accumulation of magnetic nanoporous silica nanoparticles on implant materials with different magnetic properties.

机构信息

NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Clinic for Orthopedic Surgery, Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany.

Institute for Inorganic Chemistry, Leibniz University Hannover, Callinstraße 9, 30167, Hannover, Germany.

出版信息

J Nanobiotechnology. 2018 Nov 27;16(1):96. doi: 10.1186/s12951-018-0422-6.

Abstract

BACKGROUND

In orthopedic surgery, implant-associated infections are still a major problem. For the improvement of the selective therapy in the infection area, magnetic nanoparticles as drug carriers are promising when used in combination with magnetizable implants and an externally applied magnetic field. These implants principally increase the strength of the magnetic field resulting in an enhanced accumulation of the drug loaded particles in the target area and therewith a reduction of the needed amount and the risk of undesirable side effects. In the present study magnetic nanoporous silica core-shell nanoparticles, modified with fluorophores (fluorescein isothiocyanate/FITC or rhodamine B isothiocyanate/RITC) and poly(ethylene glycol) (PEG), were used in combination with metallic plates of different magnetic properties and with a magnetic field. In vitro and in vivo experiments were performed to investigate particle accumulation and retention and their biocompatibility.

RESULTS

Spherical magnetic silica core-shell nanoparticles with reproducible superparamagnetic behavior and high porosity were synthesized. Based on in vitro proliferation and viability tests the modification with organic fluorophores and PEG led to highly biocompatible fluorescent particles, and good dispersibility. In a circular tube system martensitic steel 1.4112 showed superior accumulation and retention of the magnetic particles in comparison to ferritic steel 1.4521 and a Ti90Al6V4 control. In vivo tests in a mouse model where the nanoparticles were injected subcutaneously showed the good biocompatibility of the magnetic silica nanoparticles and their accumulation on the surface of a metallic plate, which had been implanted before, and in the surrounding tissue.

CONCLUSION

With their superparamagnetic properties and their high porosity, multifunctional magnetic nanoporous silica nanoparticles are ideal candidates as drug carriers. In combination with their good biocompatibility in vitro, they have ideal properties for an implant directed magnetic drug targeting. Missing adverse clinical and histological effects proved the good biocompatibility in vivo. Accumulation and retention of the nanoparticles could be influenced by the magnetic properties of the implanted plates; a remanent martensitic steel plate significantly improved both values in vitro. Therefore, the use of magnetizable implant materials in combination with the magnetic nanoparticles has promising potential for the selective treatment of implant-associated infections.

摘要

背景

在骨科手术中,植入物相关感染仍然是一个主要问题。为了改善感染区域的选择性治疗,将磁性纳米粒子作为药物载体与可磁化植入物和外部施加的磁场结合使用具有很大的前景。这些植入物主要增强了磁场的强度,从而导致药物负载颗粒在靶区的积累增加,从而减少了所需的量和不良副作用的风险。在本研究中,使用了荧光染料(异硫氰酸荧光素/FITC 或罗丹明 B 异硫氰酸酯/RITC)和聚乙二醇(PEG)修饰的磁性纳米多孔硅核壳纳米粒子,与不同磁性特性的金属板和磁场结合使用。进行了体外和体内实验以研究颗粒的积累和保留及其生物相容性。

结果

合成了具有可重复超顺磁性和高多孔性的球形磁性硅核壳纳米粒子。基于体外增殖和活力测试,用有机荧光染料和 PEG 进行修饰可得到高生物相容性的荧光颗粒,并且具有良好的分散性。在圆管系统中,马氏体钢 1.4112 与铁素体钢 1.4521 和 Ti90Al6V4 对照相比,显示出对磁性颗粒更好的积累和保留。在皮下注射纳米粒子的小鼠模型中进行的体内试验表明,磁性硅纳米粒子具有良好的生物相容性,并且可以在植入之前的金属板表面及其周围组织中积累。

结论

多功能磁性纳米多孔硅纳米粒子具有超顺磁性和高多孔性,是理想的药物载体候选物。结合其体外的良好生物相容性,它们具有用于植入物导向磁性药物靶向的理想特性。缺乏不良的临床和组织学影响证明了其体内的良好生物相容性。纳米粒子的积累和保留可以受植入板的磁性特性影响;残余马氏体钢板在体外显著提高了这两个值。因此,可磁化植入材料与磁性纳米粒子的结合使用具有治疗植入物相关感染的选择性的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9507/6258308/a772b0c1c70c/12951_2018_422_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验