Suppr超能文献

步态、平衡和跌倒的感觉运动解剖学。

Sensorimotor anatomy of gait, balance, and falls.

作者信息

MacKinnon Colum D

机构信息

Department of Neurology and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States.

出版信息

Handb Clin Neurol. 2018;159:3-26. doi: 10.1016/B978-0-444-63916-5.00001-X.

Abstract

The review demonstrates that control of posture and locomotion is provided by systems across the caudal-to-rostral extent of the neuraxis. A common feature of the neuroanatomic organization of the postural and locomotor control systems is the presence of key nodes for convergent input of multisensory feedback in conjunction with efferent copies of the motor command. These nodes include the vestibular and reticular nuclei and interneurons in the intermediate zone of the spinal cord (Rexed's laminae VI-VIII). This organization provides both spatial and temporal coordination of the various goals of the system and ensures that the large repertoire of voluntary movements is appropriately coupled to either anticipatory or reactive postural adjustments that ensure stability and provide the framework to support the intended action. Redundancies in the system allow adaptation and compensation when sensory modalities are impaired. These alterations in behavior are learned through reward- and error-based learning processes implemented through basal ganglia and cerebellar pathways respectively. However, neurodegenerative processes or lesions of these systems can greatly compromise the capacity to sufficiently adapt and sometimes leads to maladaptive changes that impair movement control. When these impairments occur, the risk of falls can be significantly increased and interventions are required to reduce morbidity.

摘要

该综述表明,姿势和运动控制由神经轴从尾端到吻端的多个系统提供。姿势和运动控制系统的神经解剖组织的一个共同特征是存在关键节点,用于多感觉反馈的汇聚输入以及运动指令的传出副本。这些节点包括前庭核、网状核以及脊髓中间带( Rexed板层VI - VIII)中的中间神经元。这种组织为系统的各种目标提供了空间和时间上的协调,并确保大量的自主运动能够适当地与预期或反应性姿势调整相耦合,从而确保稳定性并为支持预期动作提供框架。当感觉模态受损时,系统中的冗余允许适应和补偿。这些行为改变分别通过基底神经节和小脑通路实施的基于奖励和错误的学习过程来学习。然而,这些系统的神经退行性过程或损伤会极大地损害充分适应的能力,有时会导致损害运动控制的适应不良变化。当这些损伤发生时,跌倒风险会显著增加,需要采取干预措施以降低发病率。

相似文献

1
Sensorimotor anatomy of gait, balance, and falls.
Handb Clin Neurol. 2018;159:3-26. doi: 10.1016/B978-0-444-63916-5.00001-X.
3
Postural dependence of human locomotion during gait initiation.
J Neurophysiol. 2014 Dec 15;112(12):3095-103. doi: 10.1152/jn.00436.2014. Epub 2014 Sep 17.
4
Imaging supraspinal locomotor control in balance disorders.
Restor Neurol Neurosci. 2010;28(1):105-14. doi: 10.3233/RNN-2010-0506.
5
Expected and unexpected head yaw movements result in different modifications of gait and whole body coordination strategies.
Exp Brain Res. 2004 Jul;157(1):94-110. doi: 10.1007/s00221-003-1824-7. Epub 2004 May 14.
7
Neuromuscular Impairments Are Associated With Impaired Head and Trunk Stability During Gait in Parkinson Fallers.
Neurorehabil Neural Repair. 2017 Jan;31(1):34-47. doi: 10.1177/1545968316656057. Epub 2016 Jun 27.
9
The influence of focal cerebellar lesions on the control and adaptation of gait.
Brain. 2008 Nov;131(Pt 11):2913-27. doi: 10.1093/brain/awn246. Epub 2008 Oct 3.
10
Gait, balance, and falls in Huntington disease.
Handb Clin Neurol. 2018;159:251-260. doi: 10.1016/B978-0-444-63916-5.00016-1.

引用本文的文献

7
Visually-evoked postural responses to small, rapid stimuli in the naïve participant.
Exp Brain Res. 2025 Mar 23;243(4):99. doi: 10.1007/s00221-025-07053-4.
9
Balancing postural control and motor inhibition during gait initiation.
iScience. 2025 Feb 7;28(3):111970. doi: 10.1016/j.isci.2025.111970. eCollection 2025 Mar 21.

本文引用的文献

1
Locomotor speed control circuits in the caudal brainstem.
Nature. 2017 Nov 16;551(7680):373-377. doi: 10.1038/nature24064. Epub 2017 Oct 23.
2
Reviewing the Role of the Efferent Vestibular System in Motor and Vestibular Circuits.
Front Physiol. 2017 Aug 2;8:552. doi: 10.3389/fphys.2017.00552. eCollection 2017.
4
Climbing fibers predict movement kinematics and performance errors.
J Neurophysiol. 2017 Sep 1;118(3):1888-1902. doi: 10.1152/jn.00266.2017. Epub 2017 Jul 12.
5
Online adjustments of leg movements in healthy young and old.
Exp Brain Res. 2017 Aug;235(8):2329-2348. doi: 10.1007/s00221-017-4967-7. Epub 2017 May 6.
6
A shared neural integrator for human posture control.
J Neurophysiol. 2017 Aug 1;118(2):894-903. doi: 10.1152/jn.00428.2016. Epub 2017 Apr 26.
7
Descending Influences on Vestibulospinal and Vestibulosympathetic Reflexes.
Front Neurol. 2017 Mar 27;8:112. doi: 10.3389/fneur.2017.00112. eCollection 2017.
8
Parallel processing of internal and external feedback in the spinocerebellar system of primates.
J Neurophysiol. 2017 Jul 1;118(1):254-266. doi: 10.1152/jn.00825.2016. Epub 2017 Apr 5.
9
Both standing and postural threat decrease Achilles' tendon reflex inhibition from tendon electrical stimulation.
J Physiol. 2017 Jul 1;595(13):4493-4506. doi: 10.1113/JP273935. Epub 2017 May 4.
10
The neural control of interlimb coordination during mammalian locomotion.
J Neurophysiol. 2017 Jun 1;117(6):2224-2241. doi: 10.1152/jn.00978.2016. Epub 2017 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验