Suppr超能文献

纳米金属氧化物通过自由基介导的突变诱导抗菌耐药性。

Nano-metal oxides induce antimicrobial resistance via radical-mediated mutagenesis.

机构信息

Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.

School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, United States.

出版信息

Environ Int. 2018 Dec;121(Pt 2):1162-1171. doi: 10.1016/j.envint.2018.10.030. Epub 2018 Oct 25.

Abstract

The widespread use of nanoparticles has triggered increasing concern and interest due to the adverse effects on global public health and environmental safety. Whether the presence of nano-metal oxides (NMOs) could facilitate the formation of new antimicrobial resistance genes (ARGs) via de novo mutation is largely unknown. Here, we proved that two widely used NMOs could significantly improve the mutation frequencies of CIP- and CHL-resistant E. coli isolates; however, the corresponding metal ions have weaker effects. Distinct concentration-dependent increases of 1.0-14.2 and 1.1-456.3 folds were observed in the resistance mutations after treatment with 0.16-100 mg/L nano-AlO and 0.16-500 mg/L nano-ZnO, respectively, compared with those in the control. The resistant mutants showed resistance to multiple antibiotics and hereditary stability after sub-culturing for 5 days. We also explored the mechanism underlying the induction of antimicrobial resistance by NMOs. Whole-genome sequencing analysis showed that the mutated genes correlated with mono- and multidrug resistance, as well as undetected resistance to antibiotics. Furthermore, NMOs significantly promoted intracellular reactive oxygen species (ROS), which would lead to oxidative DNA damage and an error-prone SOS response, and consequently, mutation rates were enhanced. Our findings indicate that NMOs could accelerate the mutagenesis of multiple-antibiotic resistance and expanded the understanding of the mechanisms in nanoparticle-induced resistance, which may be significant for guiding the production and application of nanoparticles.

摘要

纳米颗粒的广泛应用引发了人们越来越多的关注和兴趣,因为它们对全球公共健康和环境安全造成了不良影响。纳米金属氧化物(NMOs)是否可以通过从头突变促进新的抗生素耐药基因(ARGs)的形成,在很大程度上尚不清楚。在这里,我们证明了两种广泛使用的 NMOs 可以显著提高 CIP 和 CHL 耐药大肠杆菌分离株的突变频率;然而,相应的金属离子的影响较弱。在用 0.16-100mg/L 纳米 AlO 和 0.16-500mg/L 纳米 ZnO 处理后,观察到耐药突变的抗性分别增加了 1.0-14.2 和 1.1-456.3 倍,与对照组相比,浓度依赖性增加明显。与对照相比,耐药突变体在经过 5 天的传代培养后对多种抗生素表现出耐药性和遗传稳定性。我们还探讨了 NMO 诱导抗生素耐药性的机制。全基因组测序分析表明,突变基因与单药和多药耐药以及未检测到的抗生素耐药相关。此外,NMO 显著促进了细胞内活性氧(ROS)的产生,这将导致氧化 DNA 损伤和易错的 SOS 反应,从而提高突变率。我们的研究结果表明,NMO 可以加速多种抗生素耐药性的突变,并加深对纳米颗粒诱导耐药性机制的理解,这对于指导纳米颗粒的生产和应用可能具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验