Suppr超能文献

质体蔗糖转运蛋白 pSuT 影响开花并影响冷响应。

The Plastidic Sugar Transporter pSuT Influences Flowering and Affects Cold Responses.

机构信息

Plant Physiology, University of Kaiserslautern, D-67653 Kaiserslautern, Germany.

Max Planck Institut for Molecular Plant Physiology, Wissenschaftspark Golm, D-14476 Potsdam, Germany.

出版信息

Plant Physiol. 2019 Feb;179(2):569-587. doi: 10.1104/pp.18.01036. Epub 2018 Nov 27.

Abstract

Sucrose (Suc) is one of the most important types of sugars in plants, serving inter alia as a long-distance transport molecule, a carbon and energy storage compound, an osmotically active solute, and fuel for many anabolic reactions. Suc biosynthesis and degradation pathways are well known; however, the regulation of Suc intracellular distribution is poorly understood. In particular, the cellular function of chloroplast Suc reserves and the transporters involved in accumulating these substantial Suc levels remain uncharacterized. Here, we characterize the plastidic sugar transporter (pSuT) in Arabidopsis (), which belongs to a subfamily of the monosaccharide transporter-like family. Transport analyses with yeast cells expressing a truncated, vacuole-targeted version of pSuT indicate that both glucose and Suc act as substrates, and nonaqueous fractionation supports a role for pSuT in Suc export from the chloroplast. The latter process is required for a correct transition from vegetative to reproductive growth and influences inflorescence architecture. Moreover, pSuT activity affects freezing-induced electrolyte release. These data further underline the central function of the chloroplast for plant development and the modulation of stress tolerance.

摘要

蔗糖(Suc)是植物中最重要的糖类型之一,除其他外,它还是一种远距离运输分子、碳和能量储存化合物、渗透活性溶质以及许多合成代谢反应的燃料。蔗糖的生物合成和降解途径广为人知;然而,蔗糖在细胞内的分布调控却知之甚少。特别是,质体蔗糖储备的细胞功能以及积累这些大量蔗糖水平的转运蛋白仍未被阐明。在这里,我们对拟南芥中的质体型糖转运蛋白(pSuT)进行了表征(),它属于单糖转运蛋白样家族的一个亚家族。用表达截短的、液泡靶向版本的 pSuT 的酵母细胞进行的转运分析表明,葡萄糖和蔗糖均可作为底物,非水部分分离支持 pSuT 在蔗糖从叶绿体输出中的作用。这一过程对于从营养生长到生殖生长的正确转变是必需的,并影响花序结构。此外,pSuT 的活性会影响冷冻诱导的电解质释放。这些数据进一步强调了叶绿体在植物发育和调节应激耐受性方面的核心功能。

相似文献

1
The Plastidic Sugar Transporter pSuT Influences Flowering and Affects Cold Responses.
Plant Physiol. 2019 Feb;179(2):569-587. doi: 10.1104/pp.18.01036. Epub 2018 Nov 27.
2
Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2.
Plant J. 2011 Oct;68(1):129-36. doi: 10.1111/j.1365-313X.2011.04672.x. Epub 2011 Jul 27.
3
Chloroplasts Are Central Players in Sugar-Induced Leaf Growth.
Plant Physiol. 2016 May;171(1):590-605. doi: 10.1104/pp.15.01669. Epub 2016 Mar 1.
4
Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis.
Plant Physiol. 2013 Nov;163(3):1338-52. doi: 10.1104/pp.113.224972. Epub 2013 Sep 12.
5
Cellulose Deficiency Is Enhanced on Hyper Accumulation of Sucrose by a H+-Coupled Sucrose Symporter.
Plant Physiol. 2016 May;171(1):110-24. doi: 10.1104/pp.16.00302. Epub 2016 Mar 24.
8
SULTR3s Function in Chloroplast Sulfate Uptake and Affect ABA Biosynthesis and the Stress Response.
Plant Physiol. 2019 May;180(1):593-604. doi: 10.1104/pp.18.01439. Epub 2019 Mar 5.

引用本文的文献

2
Subcellular plant carbohydrate metabolism under elevated temperature.
Plant Physiol. 2025 Jul 3;198(3). doi: 10.1093/plphys/kiaf117.
3
CBL1/CIPK23 phosphorylates tonoplast sugar transporter TST2 to enhance sugar accumulation in sweet orange (Citrus sinensis).
J Integr Plant Biol. 2025 Feb;67(2):327-344. doi: 10.1111/jipb.13812. Epub 2024 Nov 29.
4
Transcriptome dynamics in provides new insights into cold adaptation and de-adaptation.
Front Plant Sci. 2024 Aug 29;15:1412416. doi: 10.3389/fpls.2024.1412416. eCollection 2024.
5
The N-region sequence context impacts the chloroplast import efficiency of multi-TMD protein.
Plant Mol Biol. 2024 Aug 2;114(4):88. doi: 10.1007/s11103-024-01485-2.
7
The chromosome-scale genome and population genomics reveal the adaptative evolution of to desertification environment.
Hortic Res. 2024 Feb 6;11(3):uhae034. doi: 10.1093/hr/uhae034. eCollection 2024 Mar.
10
Genome-Wide Identification and Expression Patterns of Cucumber Invertases and Their Inhibitor Genes.
Int J Mol Sci. 2023 Aug 30;24(17):13421. doi: 10.3390/ijms241713421.

本文引用的文献

2
3
Sugar Transporter STP7 Specificity for l-Arabinose and d-Xylose Contrasts with the Typical Hexose Transporters STP8 and STP12.
Plant Physiol. 2018 Mar;176(3):2330-2350. doi: 10.1104/pp.17.01493. Epub 2018 Jan 8.
4
The Chlamydomonas mex1 mutant shows impaired starch mobilization without maltose accumulation.
J Exp Bot. 2017 Nov 2;68(18):5177-5189. doi: 10.1093/jxb/erx343.
5
Transitioning to the Next Phase: The Role of Sugar Signaling throughout the Plant Life Cycle.
Plant Physiol. 2018 Feb;176(2):1075-1084. doi: 10.1104/pp.17.01229. Epub 2017 Sep 28.
6
Sugar Transporters in Plants: New Insights and Discoveries.
Plant Cell Physiol. 2017 Sep 1;58(9):1442-1460. doi: 10.1093/pcp/pcx090.
7
Plant-Pathogen Maneuvering over Apoplastic Sugars.
Trends Plant Sci. 2017 Sep;22(9):740-743. doi: 10.1016/j.tplants.2017.07.001. Epub 2017 Aug 2.
8
Enhancements in sucrose biosynthesis capacity affect shoot branching in Arabidopsis.
Biosci Biotechnol Biochem. 2017 Aug;81(8):1470-1477. doi: 10.1080/09168451.2017.1321954. Epub 2017 May 4.
10
A Benchtop Fractionation Procedure for Subcellular Analysis of the Plant Metabolome.
Front Plant Sci. 2016 Dec 22;7:1912. doi: 10.3389/fpls.2016.01912. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验