Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA 94143.
Chan Zuckerberg Biohub, San Francisco, CA 94158.
Proc Natl Acad Sci U S A. 2018 Dec 26;115(52):E12353-E12362. doi: 10.1073/pnas.1809700115. Epub 2018 Nov 27.
Lower respiratory tract infections (LRTIs) lead to more deaths each year than any other infectious disease category. Despite this, etiologic LRTI pathogens are infrequently identified due to limitations of existing microbiologic tests. In critically ill patients, noninfectious inflammatory syndromes resembling LRTIs further complicate diagnosis. To address the need for improved LRTI diagnostics, we performed metagenomic next-generation sequencing (mNGS) on tracheal aspirates from 92 adults with acute respiratory failure and simultaneously assessed pathogens, the airway microbiome, and the host transcriptome. To differentiate pathogens from respiratory commensals, we developed a rules-based model (RBM) and logistic regression model (LRM) in a derivation cohort of 20 patients with LRTIs or noninfectious acute respiratory illnesses. When tested in an independent validation cohort of 24 patients, both models achieved accuracies of 95.5%. We next developed pathogen, microbiome diversity, and host gene expression metrics to identify LRTI-positive patients and differentiate them from critically ill controls with noninfectious acute respiratory illnesses. When tested in the validation cohort, the pathogen metric performed with an area under the receiver-operating curve (AUC) of 0.96 (95% CI, 0.86-1.00), the diversity metric with an AUC of 0.80 (95% CI, 0.63-0.98), and the host transcriptional classifier with an AUC of 0.88 (95% CI, 0.75-1.00). Combining these achieved a negative predictive value of 100%. This study suggests that a single streamlined protocol offering an integrated genomic portrait of pathogen, microbiome, and host transcriptome may hold promise as a tool for LRTI diagnosis.
下呼吸道感染(LRTIs)导致的死亡人数超过其他任何传染病类别。尽管如此,由于现有微生物检测方法的局限性,导致能够明确病因的 LRTI 病原体却很少。在重症患者中,类似于 LRTI 的非传染性炎症综合征进一步使诊断复杂化。为了满足改善 LRTI 诊断的需求,我们对 92 例急性呼吸衰竭成人的气管抽吸物进行了宏基因组下一代测序(mNGS),同时评估了病原体、气道微生物组和宿主转录组。为了将病原体与呼吸道共生菌区分开来,我们在 20 例 LRTI 或非传染性急性呼吸疾病患者的推导队列中开发了基于规则的模型(RBM)和逻辑回归模型(LRM)。在 24 例独立验证队列患者中进行测试时,这两种模型的准确率均达到 95.5%。接下来,我们开发了病原体、微生物多样性和宿主基因表达指标,以识别 LRTI 阳性患者,并将其与患有非传染性急性呼吸疾病的重症监护患者区分开来。在验证队列中进行测试时,病原体指标的受试者工作特征曲线下面积(AUC)为 0.96(95%CI,0.86-1.00),多样性指标的 AUC 为 0.80(95%CI,0.63-0.98),宿主转录分类器的 AUC 为 0.88(95%CI,0.75-1.00)。这些指标联合应用的阴性预测值为 100%。这项研究表明,提供病原体、微生物组和宿主转录组综合基因组图谱的单一简化方案可能有望成为 LRTI 诊断的工具。