Suppr超能文献

采用宏基因组下一代测序技术对慢性脑膜炎进行研究。

Chronic Meningitis Investigated via Metagenomic Next-Generation Sequencing.

机构信息

UCSF (University of California, San Francisco) Weill Institute for Neurosciences, San Francisco, California.

Department of Neurology, UCSF, San Francisco.

出版信息

JAMA Neurol. 2018 Aug 1;75(8):947-955. doi: 10.1001/jamaneurol.2018.0463.

Abstract

IMPORTANCE

Identifying infectious causes of subacute or chronic meningitis can be challenging. Enhanced, unbiased diagnostic approaches are needed.

OBJECTIVE

To present a case series of patients with diagnostically challenging subacute or chronic meningitis using metagenomic next-generation sequencing (mNGS) of cerebrospinal fluid (CSF) supported by a statistical framework generated from mNGS of control samples from the environment and from patients who were noninfectious.

DESIGN, SETTING, AND PARTICIPANTS: In this case series, mNGS data obtained from the CSF of 94 patients with noninfectious neuroinflammatory disorders and from 24 water and reagent control samples were used to develop and implement a weighted scoring metric based on z scores at the species and genus levels for both nucleotide and protein alignments to prioritize and rank the mNGS results. Total RNA was extracted for mNGS from the CSF of 7 participants with subacute or chronic meningitis who were recruited between September 2013 and March 2017 as part of a multicenter study of mNGS pathogen discovery among patients with suspected neuroinflammatory conditions. The neurologic infections identified by mNGS in these 7 participants represented a diverse array of pathogens. The patients were referred from the University of California, San Francisco Medical Center (n = 2), Zuckerberg San Francisco General Hospital and Trauma Center (n = 2), Cleveland Clinic (n = 1), University of Washington (n = 1), and Kaiser Permanente (n = 1). A weighted z score was used to filter out environmental contaminants and facilitate efficient data triage and analysis.

MAIN OUTCOMES AND MEASURES

Pathogens identified by mNGS and the ability of a statistical model to prioritize, rank, and simplify mNGS results.

RESULTS

The 7 participants ranged in age from 10 to 55 years, and 3 (43%) were female. A parasitic worm (Taenia solium, in 2 participants), a virus (HIV-1), and 4 fungi (Cryptococcus neoformans, Aspergillus oryzae, Histoplasma capsulatum, and Candida dubliniensis) were identified among the 7 participants by using mNGS. Evaluating mNGS data with a weighted z score-based scoring algorithm reduced the reported microbial taxa by a mean of 87% (range, 41%-99%) when taxa with a combined score of 0 or less were removed, effectively separating bona fide pathogen sequences from spurious environmental sequences so that, in each case, the causative pathogen was found within the top 2 scoring microbes identified using the algorithm.

CONCLUSIONS AND RELEVANCE

Diverse microbial pathogens were identified by mNGS in the CSF of patients with diagnostically challenging subacute or chronic meningitis, including a case of subarachnoid neurocysticercosis that defied diagnosis for 1 year, the first reported case of CNS vasculitis caused by Aspergillus oryzae, and the fourth reported case of C dubliniensis meningitis. Prioritizing metagenomic data with a scoring algorithm greatly clarified data interpretation and highlighted the problem of attributing biological significance to organisms present in control samples used for metagenomic sequencing studies.

摘要

重要性

识别亚急性或慢性脑膜炎的感染原因可能具有挑战性。需要增强、无偏的诊断方法。

目的

通过基于脑脊液(CSF)的宏基因组下一代测序(mNGS),并结合从环境和非感染性患者的对照样本中获得的 mNGS 数据生成的统计框架,介绍一组诊断具有挑战性的亚急性或慢性脑膜炎患者的病例系列。

设计、地点和参与者:在本病例系列中,使用来自 94 名患有非传染性神经炎症性疾病的患者的 CSF 和 24 个水和试剂对照样本的 mNGS 数据,开发并实施了一种基于 z 分数的加权评分指标,用于核苷酸和蛋白质比对,以优先排序和排名 mNGS 结果。从 2013 年 9 月至 2017 年 3 月期间作为 mNGS 病原体发现多中心研究的一部分,招募了 7 名患有亚急性或慢性脑膜炎的患者,从他们的 CSF 中提取总 RNA 进行 mNGS。mNGS 在这 7 名患者中发现的神经感染代表了各种病原体。这些患者是从加利福尼亚大学旧金山医疗中心(n=2)、扎克伯格旧金山综合医院和创伤中心(n=2)、克利夫兰诊所(n=1)、华盛顿大学(n=1)和 Kaiser Permanente(n=1)转介而来的。使用加权 z 分数过滤掉环境污染物,以方便高效的数据分类和分析。

主要结果和措施

通过 mNGS 鉴定的病原体以及统计模型对 mNGS 结果进行优先排序、排名和简化的能力。

结果

7 名患者的年龄从 10 岁到 55 岁不等,其中 3 名(43%)为女性。通过 mNGS 在 7 名患者中鉴定出 1 种寄生虫(猪带绦虫,2 名患者)、1 种病毒(HIV-1)和 4 种真菌(新型隐球菌、米曲霉、荚膜组织胞浆菌和都柏林念珠菌)。使用基于加权 z 分数的评分算法评估 mNGS 数据,当去除总分或以下的分类群时,报告的微生物分类群平均减少了 87%(范围为 41%至 99%),有效分离出真实病原体序列与虚假环境序列,以便在每种情况下,使用算法确定的前 2 个得分最高的微生物中都可以找到致病病原体。

结论和相关性

通过 mNGS 在具有挑战性的亚急性或慢性脑膜炎患者的 CSF 中鉴定出多种微生物病原体,包括 1 例亚急性蛛网膜下腔神经囊尾蚴病,该病例 1 年来一直未能确诊,这是首例由米曲霉引起的中枢神经系统血管炎,以及第四例都柏林念珠菌脑膜炎的报道。使用评分算法优先考虑宏基因组数据极大地澄清了数据解释,并突出了将生物意义归因于用于宏基因组测序研究的对照样本中存在的生物体的问题。

相似文献

1
Chronic Meningitis Investigated via Metagenomic Next-Generation Sequencing.
JAMA Neurol. 2018 Aug 1;75(8):947-955. doi: 10.1001/jamaneurol.2018.0463.
2
Apparent performance of metagenomic next-generation sequencing in the diagnosis of cryptococcal meningitis: a descriptive study.
J Med Microbiol. 2019 Aug;68(8):1204-1210. doi: 10.1099/jmm.0.000994. Epub 2019 Jun 11.
4
Performance of Metagenomic Next-Generation Sequencing for the Diagnosis of Cryptococcal Meningitis in HIV-Negative Patients.
Front Cell Infect Microbiol. 2022 Apr 21;12:831959. doi: 10.3389/fcimb.2022.831959. eCollection 2022.

引用本文的文献

1
RpNGS: an automated platform for pathogen identification and monitoring in clinical metagenomics data.
PeerJ. 2025 Aug 12;13:e19849. doi: 10.7717/peerj.19849. eCollection 2025.
3
Microbiota profiling from biopsied tissues in complex infections: a diagnostic and prognostic analysis through metagenomic next-generation sequencing.
Front Cell Infect Microbiol. 2025 May 8;15:1567981. doi: 10.3389/fcimb.2025.1567981. eCollection 2025.
4
HPD-Kit: a comprehensive toolkit for pathogen detection and analysis.
Front Cell Infect Microbiol. 2025 May 2;15:1580165. doi: 10.3389/fcimb.2025.1580165. eCollection 2025.
6
Neurocysticercosis detected by targeted next-generation sequencing of cerebrospinal fluid: a case report.
Front Neurol. 2025 Apr 17;16:1504348. doi: 10.3389/fneur.2025.1504348. eCollection 2025.
7
Chronic meningitis: diagnostic and therapeutic challenges.
Curr Opin Infect Dis. 2025 Jun 1;38(3):252-260. doi: 10.1097/QCO.0000000000001107. Epub 2025 Apr 4.
8
Leveraging innovative diagnostics as a tool to contain superbugs.
Antonie Van Leeuwenhoek. 2025 Mar 26;118(4):63. doi: 10.1007/s10482-025-02075-y.

本文引用的文献

1
Hepatitis E Virus-Associated Meningoencephalitis in a Lung Transplant Recipient Diagnosed by Clinical Metagenomic Sequencing.
Open Forum Infect Dis. 2017 Jun 13;4(3):ofx121. doi: 10.1093/ofid/ofx121. eCollection 2017 Summer.
2
A novel cause of chronic viral meningoencephalitis: Cache Valley virus.
Ann Neurol. 2017 Jul;82(1):105-114. doi: 10.1002/ana.24982.
5
Next-generation sequencing in neuropathologic diagnosis of infections of the nervous system.
Neurol Neuroimmunol Neuroinflamm. 2016 Jun 13;3(4):e251. doi: 10.1212/NXI.0000000000000251. eCollection 2016 Aug.
7
Meningitis Caused by Candida Dubliniensis in a Patient with Cirrhosis: A Case Report and Review of the Literature.
Mycopathologia. 2016 Aug;181(7-8):589-93. doi: 10.1007/s11046-016-0006-7. Epub 2016 Apr 1.
8
Diagnosing Balamuthia mandrillaris Encephalitis With Metagenomic Deep Sequencing.
Ann Neurol. 2015 Nov;78(5):722-30. doi: 10.1002/ana.24499. Epub 2015 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验