Suppr超能文献

通过突触可塑性抑制模块化神经元网络中的爆发同步。

Suppressing bursting synchronization in a modular neuronal network with synaptic plasticity.

作者信息

Wang JiaYi, Yang XiaoLi, Sun ZhongKui

机构信息

1College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, 710062 People's Republic of China.

2Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, 710072 People's Republic of China.

出版信息

Cogn Neurodyn. 2018 Dec;12(6):625-636. doi: 10.1007/s11571-018-9498-9. Epub 2018 Aug 12.

Abstract

Excessive synchronization of neurons in cerebral cortex is believed to play a crucial role in the emergence of neuropsychological disorders such as Parkinson's disease, epilepsy and essential tremor. This study, by constructing a modular neuronal network with modified Oja's learning rule, explores how to eliminate the pathological synchronized rhythm of interacted busting neurons numerically. When all neurons in the modular neuronal network are strongly synchronous within a specific range of coupling strength, the result reveals that synaptic plasticity with large learning rate can suppress bursting synchronization effectively. For the relative small learning rate not capable of suppressing synchronization, the technique of nonlinear delayed feedback control including differential feedback control and direct feedback control is further proposed to reduce the synchronized bursting state of coupled neurons. It is demonstrated that the two kinds of nonlinear feedback control can eliminate bursting synchronization significantly when the control parameters of feedback strength and feedback delay are appropriately tuned. For the former control technique, the control domain of effective synchronization suppression is similar to a semi-elliptical domain in the simulated parameter space of feedback strength and feedback delay, while for the latter one, the effective control domain is similar to a fan-shaped domain in the simulated parameter space.

摘要

大脑皮层中神经元的过度同步被认为在帕金森病、癫痫和特发性震颤等神经心理障碍的发生中起关键作用。本研究通过构建具有修正奥贾学习规则的模块化神经元网络,从数值上探索如何消除相互作用的爆发性神经元的病理性同步节律。当模块化神经元网络中的所有神经元在特定耦合强度范围内强烈同步时,结果表明,具有大学习率的突触可塑性可以有效抑制爆发同步。对于相对较小的、无法抑制同步的学习率,进一步提出了包括微分反馈控制和直接反馈控制在内的非线性延迟反馈控制技术,以降低耦合神经元的同步爆发状态。结果表明,当反馈强度和反馈延迟的控制参数得到适当调整时,这两种非线性反馈控制都能显著消除爆发同步。对于前一种控制技术,有效同步抑制的控制域在反馈强度和反馈延迟的模拟参数空间中类似于一个半椭圆域,而对于后一种控制技术,有效控制域在模拟参数空间中类似于一个扇形域。

相似文献

1
Suppressing bursting synchronization in a modular neuronal network with synaptic plasticity.
Cogn Neurodyn. 2018 Dec;12(6):625-636. doi: 10.1007/s11571-018-9498-9. Epub 2018 Aug 12.
2
Delayed feedback control of bursting synchronization in a scale-free neuronal network.
Neural Netw. 2010 Jan;23(1):114-24. doi: 10.1016/j.neunet.2009.08.005. Epub 2009 Aug 20.
4
Modeling of synchronization behavior of bursting neurons at nonlinearly coupled dynamical networks.
Network. 2016;27(4):289-305. doi: 10.1080/0954898X.2016.1249981. Epub 2016 Nov 10.
7
When two wrongs make a right: synchronized neuronal bursting from combined electrical and inhibitory coupling.
Philos Trans A Math Phys Eng Sci. 2017 Jun 28;375(2096). doi: 10.1098/rsta.2016.0282.
8
Reliability and synchronization in a delay-coupled neuronal network with synaptic plasticity.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jun;83(6 Pt 1):061915. doi: 10.1103/PhysRevE.83.061915. Epub 2011 Jun 17.
10
Chaotic phase synchronization in small-world networks of bursting neurons.
Chaos. 2011 Mar;21(1):013127. doi: 10.1063/1.3565027.

引用本文的文献

1
Effect of internal and external chaotic stimuli on synchronization of piezoelectric auditory neurons in coupled time-delay systems.
Cogn Neurodyn. 2024 Aug;18(4):2111-2126. doi: 10.1007/s11571-023-10042-4. Epub 2023 Dec 1.
2
Influence of inhibitory autapses on synchronization of inhibitory network gamma oscillations.
Cogn Neurodyn. 2023 Oct;17(5):1131-1152. doi: 10.1007/s11571-022-09856-5. Epub 2022 Aug 12.
3
Interaction of Indirect and Hyperdirect Pathways on Synchrony and Tremor-Related Oscillation in the Basal Ganglia.
Neural Plast. 2021 Mar 13;2021:6640105. doi: 10.1155/2021/6640105. eCollection 2021.
4
Epileptic seizures in a heterogeneous excitatory network with short-term plasticity.
Cogn Neurodyn. 2021 Feb;15(1):43-51. doi: 10.1007/s11571-020-09582-w. Epub 2020 Mar 16.
6
The beta oscillation conditions in a simplified basal ganglia network.
Cogn Neurodyn. 2019 Apr;13(2):201-217. doi: 10.1007/s11571-018-9514-0. Epub 2018 Dec 4.

本文引用的文献

1
Effect of spike-timing-dependent plasticity on stochastic burst synchronization in a scale-free neuronal network.
Cogn Neurodyn. 2018 Jun;12(3):315-342. doi: 10.1007/s11571-017-9470-0. Epub 2018 Jan 10.
2
A decision-making model based on a spiking neural circuit and synaptic plasticity.
Cogn Neurodyn. 2017 Oct;11(5):415-431. doi: 10.1007/s11571-017-9436-2. Epub 2017 Apr 3.
3
Dynamical responses to external stimuli for both cases of excitatory and inhibitory synchronization in a complex neuronal network.
Cogn Neurodyn. 2017 Oct;11(5):395-413. doi: 10.1007/s11571-017-9441-5. Epub 2017 Jun 10.
8
Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation.
PLoS One. 2017 Mar 8;12(3):e0173363. doi: 10.1371/journal.pone.0173363. eCollection 2017.
9
Optimal path-finding through mental exploration based on neural energy field gradients.
Cogn Neurodyn. 2017 Feb;11(1):99-111. doi: 10.1007/s11571-016-9412-2. Epub 2016 Sep 30.
10
Stability and synchronization analysis of inertial memristive neural networks with time delays.
Cogn Neurodyn. 2016 Oct;10(5):437-51. doi: 10.1007/s11571-016-9392-2. Epub 2016 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验