Suppr超能文献

一种基于脉冲神经回路和突触可塑性的决策模型。

A decision-making model based on a spiking neural circuit and synaptic plasticity.

作者信息

Wei Hui, Bu Yijie, Dai Dawei

机构信息

Laboratory of Cognitive Modeling and Algorithms, Shanghai Key Laboratory of Data Science, Department of Computer Science, Fudan University, Shanghai, China.

出版信息

Cogn Neurodyn. 2017 Oct;11(5):415-431. doi: 10.1007/s11571-017-9436-2. Epub 2017 Apr 3.

Abstract

To adapt to the environment and survive, most animals can control their behaviors by making decisions. The process of decision-making and responding according to cues in the environment is stable, sustainable, and learnable. Understanding how behaviors are regulated by neural circuits and the encoding and decoding mechanisms from stimuli to responses are important goals in neuroscience. From results observed in Drosophila experiments, the underlying decision-making process is discussed, and a neural circuit that implements a two-choice decision-making model is proposed to explain and reproduce the observations. Compared with previous two-choice decision making models, our model uses synaptic plasticity to explain changes in decision output given the same environment. Moreover, biological meanings of parameters of our decision-making model are discussed. In this paper, we explain at the micro-level (i.e., neurons and synapses) how observable decision-making behavior at the macro-level is acquired and achieved.

摘要

为了适应环境并生存下来,大多数动物能够通过做出决策来控制自身行为。根据环境中的线索进行决策和做出反应的过程是稳定、可持续且可学习的。理解神经回路如何调节行为以及从刺激到反应的编码和解码机制是神经科学的重要目标。基于在果蝇实验中观察到的结果,讨论了潜在的决策过程,并提出了一个实现二选一决策模型的神经回路来解释和重现这些观察结果。与先前的二选一决策模型相比,我们的模型利用突触可塑性来解释在相同环境下决策输出的变化。此外,还讨论了我们决策模型参数的生物学意义。在本文中,我们在微观层面(即神经元和突触)解释了宏观层面上可观察到的决策行为是如何获得和实现的。

相似文献

1
A decision-making model based on a spiking neural circuit and synaptic plasticity.
Cogn Neurodyn. 2017 Oct;11(5):415-431. doi: 10.1007/s11571-017-9436-2. Epub 2017 Apr 3.
2
Learning and executing goal-directed choices by internally generated sequences in spiking neural circuits.
PLoS Comput Biol. 2017 Jul 31;13(7):e1005669. doi: 10.1371/journal.pcbi.1005669. eCollection 2017 Jul.
3
Model-Driven Analysis of Eyeblink Classical Conditioning Reveals the Underlying Structure of Cerebellar Plasticity and Neuronal Activity.
IEEE Trans Neural Netw Learn Syst. 2017 Nov;28(11):2748-2762. doi: 10.1109/TNNLS.2016.2598190.
4
A plausible neural circuit for decision making and its formation based on reinforcement learning.
Cogn Neurodyn. 2017 Jun;11(3):259-281. doi: 10.1007/s11571-017-9426-4. Epub 2017 Feb 18.
5
A biophysically based neural model of matching law behavior: melioration by stochastic synapses.
J Neurosci. 2006 Apr 5;26(14):3731-44. doi: 10.1523/JNEUROSCI.5159-05.2006.
6
Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule.
Neural Netw. 2013 Dec;48:109-24. doi: 10.1016/j.neunet.2013.07.012. Epub 2013 Aug 14.
7
Social Status-Dependent Shift in Neural Circuit Activation Affects Decision Making.
J Neurosci. 2017 Feb 22;37(8):2137-2148. doi: 10.1523/JNEUROSCI.1548-16.2017. Epub 2017 Jan 16.
9
Statistical mechanics of reward-modulated learning in decision-making networks.
Neural Comput. 2012 May;24(5):1230-70. doi: 10.1162/NECO_a_00264. Epub 2012 Feb 1.
10
Decision making under uncertainty in a spiking neural network model of the basal ganglia.
J Integr Neurosci. 2016 Dec;15(4):515-538. doi: 10.1142/S021963521650028X. Epub 2016 Dec 21.

引用本文的文献

1
Setting a double-capacitive neuron coupled with Josephson junction and piezoelectric source.
Cogn Neurodyn. 2024 Oct;18(5):3125-3137. doi: 10.1007/s11571-024-10145-6. Epub 2024 Jul 2.
2
Bio-inspired neural networks for decision-making mechanisms and neuromodulation for motor control in a differential robot.
Front Neurorobot. 2023 Feb 3;17:1078074. doi: 10.3389/fnbot.2023.1078074. eCollection 2023.
3
A neural algorithm for Drosophila linear and nonlinear decision-making.
Sci Rep. 2020 Oct 29;10(1):18660. doi: 10.1038/s41598-020-75628-y.
4
A Temporal Signal-Processing Circuit Based on Spiking Neuron and Synaptic Learning.
Front Comput Neurosci. 2019 Jun 28;13:41. doi: 10.3389/fncom.2019.00041. eCollection 2019.
5
Neurodynamic analysis of Merkel cell-neurite complex transduction mechanism during tactile sensing.
Cogn Neurodyn. 2019 Jun;13(3):293-302. doi: 10.1007/s11571-018-9507-z. Epub 2018 Sep 22.
6
Suppressing bursting synchronization in a modular neuronal network with synaptic plasticity.
Cogn Neurodyn. 2018 Dec;12(6):625-636. doi: 10.1007/s11571-018-9498-9. Epub 2018 Aug 12.

本文引用的文献

1
Weak electric fields detectability in a noisy neural network.
Cogn Neurodyn. 2017 Feb;11(1):81-90. doi: 10.1007/s11571-016-9409-x. Epub 2016 Sep 12.
2
Bursting dynamics remarkably improve the performance of neural networks on liquid computing.
Cogn Neurodyn. 2016 Oct;10(5):415-21. doi: 10.1007/s11571-016-9387-z. Epub 2016 Apr 28.
3
A neural network model of reliably optimized spike transmission.
Cogn Neurodyn. 2015 Jun;9(3):265-77. doi: 10.1007/s11571-015-9329-1. Epub 2015 Jan 23.
4
Oscillations and synchrony in a cortical neural network.
Cogn Neurodyn. 2014 Apr;8(2):157-66. doi: 10.1007/s11571-013-9268-7. Epub 2013 Sep 11.
5
A large-scale model of the functioning brain.
Science. 2012 Nov 30;338(6111):1202-5. doi: 10.1126/science.1225266.
6
From circuits to behavior: a bridge too far?
Nat Neurosci. 2012 Mar 27;15(4):507-9. doi: 10.1038/nn.3043.
7
Computer modelling: Brain in a box.
Nature. 2012 Feb 22;482(7386):456-8. doi: 10.1038/482456a.
8
Large-scale model of mammalian thalamocortical systems.
Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3593-8. doi: 10.1073/pnas.0712231105. Epub 2008 Feb 21.
9
Simple model of spiking neurons.
IEEE Trans Neural Netw. 2003;14(6):1569-72. doi: 10.1109/TNN.2003.820440.
10
Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks.
IEEE Trans Neural Netw. 2002;13(2):426-35. doi: 10.1109/72.991428.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验