Goodreau Steven M, Stansfield Sarah E, Murphy James T, Peebles Kathryn C, Gottlieb Geoffrey S, Abernethy Neil F, Herbeck Joshua T, Mittler John E
Department of Anthropology, Campus Box 353100, Seattle, WA 98195, USA.
Department of Microbiology, Campus Box 357735, Seattle, WA 98195, USA.
Virus Evol. 2018 Nov 21;4(2):vey032. doi: 10.1093/ve/vey032. eCollection 2018 Jul.
HIV viral load (VL) predicts both transmission potential and rate of disease progression. For reasons that are still not fully understood, the set point viral load (SPVL) established after acute infection varies across individuals and populations. Previous studies have suggested that population mean SPVL (MSPVL) has evolved near an optimum that reflects a trade-off between transmissibility and host survival. Sexual network structures affect rates of potential exposure during different within-host phases of infection marked by different transmission probabilities, and thus affect the number and timing of transmission events. These structures include , which has been argued to explain key differences in HIV burden across populations. We hypothesize that concurrency will alter the fitness landscape for SPVL in ways that differ from other network features whose impacts accrue at other times during infection. To quantitatively test this hypothesis, we developed a dynamic, stochastic, data-driven network model of HIV transmission, and evolution to assess the impact of key sexual network phenomena on MSPVL evolution. Experiments were repeated in sensitivity runs that made different assumptions about transmissibility during acute infection, SPVL heritability, and the functional form of the relationship between VL and transmissibility. For our main transmission model, scenarios yielded MSPVLs ranging from 4.4 to 4.75 log copies/ml, covering much of the observed empirical range. MSPVL evolved to be higher in populations with high concurrency and shorter relational durations, with values varying over a clinically significant range. In linear regression analyses on these and other predictors, main effects were significant ( < 0.05), as were interaction terms, indicating that effects are interdependent. We also noted a strong correlation between two key emergent properties measured at the end of the simulations-MSPVL and HIV prevalence-most clearly for phenomena that affect transmission networks early in infection. Controlling for prevalence, high concurrency yielded higher MSPVL than other network phenomena. Interestingly, we observed lower prevalence in runs in which SPVL heritability was zero, indicating the potential for viral evolution to exacerbate disease burden over time. Future efforts to understand empirical variation in MSPVL should consider local HIV burden and basic sexual behavioral and network structure.
人类免疫缺陷病毒载量(VL)可预测传播潜力和疾病进展速率。由于仍未完全理解的原因,急性感染后确立的设定点病毒载量(SPVL)在个体和人群中存在差异。先前的研究表明,人群平均SPVL(MSPVL)已在接近一个最优值的状态下进化,该最优值反映了传染性与宿主存活之间的权衡。性网络结构会影响感染宿主不同阶段(以不同传播概率为特征)的潜在暴露率,进而影响传播事件的数量和时间。这些结构包括……,有人认为这可以解释不同人群中艾滋病负担的关键差异。我们假设,同时性伴侣关系会以不同于其他网络特征的方式改变SPVL的适应性景观,其他网络特征的影响在感染的其他时间累积。为了定量检验这一假设,我们开发了一个动态、随机、数据驱动的HIV传播和进化网络模型,以评估关键的性网络现象对MSPVL进化的影响。在敏感性分析中重复进行了实验,这些分析对急性感染期间的传染性、SPVL遗传力以及VL与传染性之间关系的函数形式做出了不同假设。对于我们的主要传播模型,不同情景产生的MSPVL范围为4.4至4.75 log拷贝/毫升,涵盖了大部分观察到的经验范围。在同时性伴侣关系高且关系持续时间短的人群中,MSPVL进化得更高,其值在临床上有显著差异。在对这些及其他预测因素进行的线性回归分析中,主效应显著(P<0.05),交互项也显著,表明各效应相互依赖。我们还注意到,在模拟结束时测量的两个关键涌现属性——MSPVL和艾滋病病毒流行率之间存在很强的相关性,对于在感染早期影响传播网络的现象最为明显。在控制流行率的情况下,高同时性伴侣关系产生的MSPVL高于其他网络现象。有趣的是,我们观察到在SPVL遗传力为零的模拟中流行率较低,这表明病毒进化有可能随着时间的推移加剧疾病负担。未来旨在理解MSPVL经验差异的研究应考虑当地的艾滋病负担以及基本的性行为和网络结构。