Suppr超能文献

饱和效应与并发假说:来自一个分析模型的见解

Saturation effects and the concurrency hypothesis: Insights from an analytic model.

作者信息

Miller Joel C, Slim Anja C

机构信息

Institute for Disease Modeling, Bellevue, WA, United States of America.

School of Mathematical Sciences, Monash University, Clayton, VIC, Australia.

出版信息

PLoS One. 2017 Nov 14;12(11):e0187938. doi: 10.1371/journal.pone.0187938. eCollection 2017.

Abstract

Sexual partnerships that overlap in time (concurrent relationships) may play a significant role in the HIV epidemic, but the precise effect is unclear. We derive edge-based compartmental models of disease spread in idealized dynamic populations with and without concurrency to allow for an investigation of its effects. Our models assume that partnerships change in time and individuals enter and leave the at-risk population. Infected individuals transmit at a constant per-partnership rate to their susceptible partners. In our idealized populations we find regions of parameter space where the existence of concurrent partnerships leads to substantially faster growth and higher equilibrium levels, but also regions in which the existence of concurrent partnerships has very little impact on the growth or the equilibrium. Additionally we find mixed regimes in which concurrency significantly increases the early growth, but has little effect on the ultimate equilibrium level. Guided by model predictions, we discuss general conditions under which concurrent relationships would be expected to have large or small effects in real-world settings. Our observation that the impact of concurrency saturates suggests that concurrency-reducing interventions may be most effective in populations with low to moderate concurrency.

摘要

在时间上重叠的性伴侣关系(同时存在的关系)可能在艾滋病流行中发挥重要作用,但确切影响尚不清楚。我们推导了在理想化动态人群中,存在和不存在同时性关系时疾病传播的基于边的分区模型,以便研究其影响。我们的模型假设伴侣关系随时间变化,个体进入和离开高危人群。受感染个体以恒定的每个伴侣关系的速率将病毒传播给其易感伴侣。在我们理想化的人群中,我们发现参数空间的区域,其中同时性伴侣关系的存在导致增长大幅加快和更高的平衡水平,但也存在同时性伴侣关系的存在对增长或平衡影响很小的区域。此外,我们发现了混合模式,其中同时性关系显著增加早期增长,但对最终平衡水平影响很小。根据模型预测,我们讨论了在现实世界环境中,预计同时性关系会产生大或小影响的一般条件。我们观察到同时性的影响会饱和,这表明减少同时性的干预措施可能在低至中等同时性的人群中最有效。

相似文献

1
Saturation effects and the concurrency hypothesis: Insights from an analytic model.
PLoS One. 2017 Nov 14;12(11):e0187938. doi: 10.1371/journal.pone.0187938. eCollection 2017.
2
Concurrency of partnerships, consistency with data, and control of sexually transmitted infections.
Epidemics. 2018 Dec;25:35-46. doi: 10.1016/j.epidem.2018.05.003. Epub 2018 May 14.
3
4
Concurrent partnerships and the spread of HIV.
AIDS. 1997 Apr;11(5):641-8. doi: 10.1097/00002030-199705000-00012.
5
Gender asymmetry in concurrent partnerships and HIV prevalence.
Epidemics. 2017 Jun;19:53-60. doi: 10.1016/j.epidem.2017.01.003. Epub 2017 Jan 20.
6
Concurrent sexual partnerships and primary HIV infection: a critical interaction.
AIDS Behav. 2011 May;15(4):687-92. doi: 10.1007/s10461-010-9787-8.
7
Concurrency can drive an HIV epidemic by moving R0 across the epidemic threshold.
AIDS. 2015 Jun 1;29(9):1097-103. doi: 10.1097/QAD.0000000000000676.
10
Size matters: concurrency and the epidemic potential of HIV in small networks.
PLoS One. 2012;7(8):e43048. doi: 10.1371/journal.pone.0043048. Epub 2012 Aug 24.

引用本文的文献

1
Staged HIV transmission and treatment in a dynamic model with long-term partnerships.
J Math Biol. 2023 Apr 13;86(5):74. doi: 10.1007/s00285-023-01885-w.
2
Concurrency measures in the era of temporal network epidemiology: a review.
J R Soc Interface. 2021 Jun;18(179):20210019. doi: 10.1098/rsif.2021.0019. Epub 2021 Jun 2.
3
A sexually transmitted infection model with long-term partnerships in homogeneous and heterogenous populations.
Infect Dis Model. 2019 May 16;4:142-160. doi: 10.1016/j.idm.2019.05.002. eCollection 2019.
4
Relational concurrency, stages of infection, and the evolution of HIV set point viral load.
Virus Evol. 2018 Nov 21;4(2):vey032. doi: 10.1093/ve/vey032. eCollection 2018 Jul.

本文引用的文献

1
Unification of theoretical approaches for epidemic spreading on complex networks.
Rep Prog Phys. 2017 Mar;80(3):036603. doi: 10.1088/1361-6633/aa5398. Epub 2017 Feb 8.
2
Dangerous connections: on binding site models of infectious disease dynamics.
J Math Biol. 2017 Feb;74(3):619-671. doi: 10.1007/s00285-016-1037-x. Epub 2016 Jun 20.
3
Concurrency can drive an HIV epidemic by moving R0 across the epidemic threshold.
AIDS. 2015 Jun 1;29(9):1097-103. doi: 10.1097/QAD.0000000000000676.
5
SI infection on a dynamic partnership network: characterization of R0.
J Math Biol. 2015 Jul;71(1):1-56. doi: 10.1007/s00285-014-0808-5. Epub 2014 Jul 10.
6
Incorporating disease and population structure into models of SIR disease in contact networks.
PLoS One. 2013 Aug 19;8(8):e69162. doi: 10.1371/journal.pone.0069162. eCollection 2013.
7
Sex, drugs, and race: how behaviors differentially contribute to the sexually transmitted infection risk network structure.
Am J Public Health. 2013 Feb;103(2):322-9. doi: 10.2105/AJPH.2012.300908. Epub 2012 Dec 13.
8
Dynamic concurrent partnership networks incorporating demography.
Theor Popul Biol. 2012 Nov;82(3):229-39. doi: 10.1016/j.tpb.2012.07.001. Epub 2012 Aug 1.
9
Edge-based compartmental modelling for infectious disease spread.
J R Soc Interface. 2012 May 7;9(70):890-906. doi: 10.1098/rsif.2011.0403. Epub 2011 Oct 5.
10
HIV transmissions during seroconversion contribute significantly to new infections in men who have sex with men in Australia.
AIDS Res Hum Retroviruses. 2012 May;28(5):460-4. doi: 10.1089/AID.2011.0137. Epub 2011 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验