Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , Via E. Orabona, 4 , I-70126 Bari , Italy.
J Chem Inf Model. 2019 Jan 28;59(1):586-596. doi: 10.1021/acs.jcim.8b00698. Epub 2018 Dec 14.
We present MuSSeL, a multifingerprint similarity search algorithm, able to predict putative drug targets for a given query small molecule as well as to return a quantitative assessment of its bioactivity in terms of K or IC values. Predictions are automatically made exploiting a large collection of high quality experimental bioactivity data available from ChEMBL (version 22.1) combining, in a consensus-like approach, predictions resulting from a similarity search performed using 13 different fingerprint definitions. Importantly, the herein proposed algorithm is also effective in detecting and handling activity cliffs. A calibration set including small molecules present in the last updated version of ChEMBL (version 23) was employed to properly tune the algorithm parameters. Three randomly built external sets were instead challenged for model performances. The potential use of MuSSeL was also challenged by a prospective exercise for the prediction of five bioactive compounds taken from articles published in the Journal of Medicinal Chemistry just few months ago. The paper emphasizes the importance of implementing multifingerprint consensus strategies to increase the confidence in prediction of similarity search algorithms and provides a fast and easy-to-run tool for drug target and bioactivity prediction.
我们提出了 MuSSeL,这是一种多指纹相似性搜索算法,能够预测给定查询小分子的潜在药物靶点,并返回其生物活性的定量评估,以 K 或 IC 值表示。预测是通过利用来自 ChEMBL(版本 22.1)的高质量实验生物活性数据的大型集合自动完成的,该集合通过使用 13 种不同指纹定义进行相似性搜索来结合预测,类似于共识方法。重要的是,本文提出的算法在检测和处理活性悬崖方面也非常有效。使用包含在 ChEMBL 最新更新版本(版本 23)中的小分子的校准集来正确调整算法参数。另外,还使用三个随机构建的外部集来挑战模型性能。MuSSeL 的潜在用途还通过对几篇《药物化学杂志》上发表的文章中提取的五个生物活性化合物的预测进行前瞻性研究进行了挑战。该论文强调了实施多指纹共识策略的重要性,以提高相似性搜索算法预测的可信度,并提供了一种快速且易于运行的药物靶点和生物活性预测工具。