文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于图正则化多视图非负矩阵分解的癌症基因组数据共差异基因选择与聚类

Co-differential Gene Selection and Clustering Based on Graph Regularized Multi-View NMF in Cancer Genomic Data.

作者信息

Yu Na, Gao Ying-Lian, Liu Jin-Xing, Shang Junliang, Zhu Rong, Dai Ling-Yun

机构信息

School of Information Science and Engineering, Qufu Normal University, Rizhao 276826, China.

Library of Qufu Normal University, Qufu Normal University, Rizhao 276826, China.

出版信息

Genes (Basel). 2018 Nov 28;9(12):586. doi: 10.3390/genes9120586.


DOI:10.3390/genes9120586
PMID:30487464
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6315625/
Abstract

Cancer genomic data contain views from different sources that provide complementary information about genetic activity. This provides a new way for cancer research. Feature selection and multi-view clustering are hot topics in bioinformatics, and they can make full use of complementary information to improve the effect. In this paper, a novel integrated model called Multi-view Non-negative Matrix Factorization (MvNMF) is proposed for the selection of common differential genes (co-differential genes) and multi-view clustering. In order to encode the geometric information in the multi-view genomic data, graph regularized MvNMF (GMvNMF) is further proposed by applying the graph regularization constraint in the objective function. GMvNMF can not only obtain the potential shared feature structure and shared cluster group structure, but also capture the manifold structure of multi-view data. The validity of the proposed GMvNMF method was tested in four multi-view genomic data. Experimental results showed that the GMvNMF method has better performance than other representative methods.

摘要

癌症基因组数据包含来自不同来源的视图,这些视图提供了有关基因活性的补充信息。这为癌症研究提供了一种新方法。特征选择和多视图聚类是生物信息学中的热门话题,它们可以充分利用补充信息来提高效果。本文提出了一种名为多视图非负矩阵分解(MvNMF)的新型集成模型,用于选择共同差异基因(共差异基因)和多视图聚类。为了编码多视图基因组数据中的几何信息,通过在目标函数中应用图正则化约束,进一步提出了图正则化MvNMF(GMvNMF)。GMvNMF不仅可以获得潜在的共享特征结构和共享聚类组结构,还可以捕获多视图数据的流形结构。在所提出的GMvNMF方法的有效性在四个多视图基因组数据中进行了测试。实验结果表明,GMvNMF方法比其他代表性方法具有更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50c2/6315625/14ccedb3136e/genes-09-00586-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50c2/6315625/197ee1c83d02/genes-09-00586-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50c2/6315625/6936ec9b3b16/genes-09-00586-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50c2/6315625/14ccedb3136e/genes-09-00586-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50c2/6315625/197ee1c83d02/genes-09-00586-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50c2/6315625/6936ec9b3b16/genes-09-00586-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50c2/6315625/14ccedb3136e/genes-09-00586-g003.jpg

相似文献

[1]
Co-differential Gene Selection and Clustering Based on Graph Regularized Multi-View NMF in Cancer Genomic Data.

Genes (Basel). 2018-11-28

[2]
Robust hypergraph regularized non-negative matrix factorization for sample clustering and feature selection in multi-view gene expression data.

Hum Genomics. 2019-10-22

[3]
Multi-View Random-Walk Graph Regularization Low-Rank Representation for Cancer Clustering and Differentially Expressed Gene Selection.

IEEE J Biomed Health Inform. 2022-7

[4]
Multi-view clustering via multi-manifold regularized non-negative matrix factorization.

Neural Netw. 2017-4

[5]
Correntropy-Based Hypergraph Regularized NMF for Clustering and Feature Selection on Multi-Cancer Integrated Data.

IEEE Trans Cybern. 2021-8

[6]
CGC: A Flexible and Robust Approach to Integrating Co-Regularized Multi-Domain Graph for Clustering.

ACM Trans Knowl Discov Data. 2016-7

[7]
A Robust Manifold Graph Regularized Nonnegative Matrix Factorization Algorithm for Cancer Gene Clustering.

Molecules. 2017-12-2

[8]
Multi-view manifold regularized compact low-rank representation for cancer samples clustering on multi-omics data.

BMC Bioinformatics. 2022-1-20

[9]
Robust capped norm dual hyper-graph regularized non-negative matrix tri-factorization.

Math Biosci Eng. 2023-5-24

[10]
Convex nonnegative matrix factorization with manifold regularization.

Neural Netw. 2014-12-4

引用本文的文献

[1]
GRACKLE: an interpretable matrix factorization approach for biomedical representation learning.

Bioinformatics. 2025-7-1

[2]
Application of non-negative matrix factorization in oncology: one approach for establishing precision medicine.

Brief Bioinform. 2022-7-18

[3]
Prognosis of Tumor Microenvironment in Luminal B-Type Breast Cancer.

Dis Markers. 2022

[4]
SMRT: Randomized Data Transformation for Cancer Subtyping and Big Data Analysis.

Front Oncol. 2021-10-20

[5]
Clonal Architectures Predict Clinical Outcome in Gastric Adenocarcinoma Based on Genomic Variation, Tumor Evolution, and Heterogeneity.

Cell Transplant. 2021

[6]
Identification of an Immune Gene Signature Based on Tumor Microenvironment Characteristics in Colon Adenocarcinoma.

Cell Transplant. 2021

[7]
Integrative analysis of genomic, epigenomic and transcriptomic data identified molecular subtypes of esophageal carcinoma.

Aging (Albany NY). 2021-2-26

[8]
Development and validation of prognostic markers in sarcomas base on a multi-omics analysis.

BMC Med Genomics. 2021-1-28

[9]
Correntropy induced loss based sparse robust graph regularized extreme learning machine for cancer classification.

BMC Bioinformatics. 2020-10-7

[10]
Integrative analysis of genomic and epigenetic regulation of endometrial cancer.

Aging (Albany NY). 2020-5-15

本文引用的文献

[1]
Bayesian Joint Matrix Decomposition for Data Integration with Heterogeneous Noise.

IEEE Trans Pattern Anal Mach Intell. 2021-4

[2]
Diverse Non-Negative Matrix Factorization for Multiview Data Representation.

IEEE Trans Cybern. 2017-9-8

[3]
Regularized Non-Negative Matrix Factorization for Identifying Differentially Expressed Genes and Clustering Samples: A Survey.

IEEE/ACM Trans Comput Biol Bioinform. 2017-2-7

[4]
Prognostic and predictive value of EGFR in head and neck squamous cell carcinoma.

Oncotarget. 2016-11-8

[5]
Block-Constraint Robust Principal Component Analysis and its Application to Integrated Analysis of TCGA Data.

IEEE Trans Nanobioscience. 2016-9

[6]
Orthogonal matrix factorization enables integrative analysis of multiple RNA binding proteins.

Bioinformatics. 2016-5-15

[7]
A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data.

Bioinformatics. 2016-1-1

[8]
The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge.

Contemp Oncol (Pozn). 2015

[9]
jNMFMA: a joint non-negative matrix factorization meta-analysis of transcriptomics data.

Bioinformatics. 2015-2-15

[10]
MACOED: a multi-objective ant colony optimization algorithm for SNP epistasis detection in genome-wide association studies.

Bioinformatics. 2014-10-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索