Zhao Jiang, Yi Ning, Ding Xiaohong, Liu Shangbin, Zhu Jia, Castonguay Alexander C, Gao Yuyan, Zarzar Lauren D, Cheng Huanyu
Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.
Chem Eng J. 2023 Jan 15;456. doi: 10.1016/j.cej.2022.140956. Epub 2022 Dec 19.
Gas-sensitive semiconducting nanomaterials (e.g., metal oxides, graphene oxides, and transition metal dichalcogenides) and their heterojunctions hold great promise in chemiresistive gas sensors. However, they often require a separate synthesis method (e.g., hydrothermal, so-gel, and co-precipitation) and their integration on interdigitated electrodes (IDE) via casting is also associated with weak interfacial properties. This work demonstrates in situ laser-assisted synthesis and patterning of various sensing nanomaterials and their heterojunctions on laser-induced graphene (LIG) foam to form LIG composites as a flexible and stretchable gas sensing platform. The porous LIG line or pattern with nanomaterial precursors dispensed on top is scribed by laser to allow for in situ growth of corresponding nanomaterials. The versatility of the proposed method is highlighted through the creation of different types of gas-sensitive materials, including transition metal dichalcogenide (e.g., MoS), metal oxide (e.g., CuO), noble metal-doped metal oxide (e.g., Ag/ZnO) and composite metal oxides (e.g., InO/CrO). By eliminating the IDE and separate heaters, the LIG gas sensing platform with self-heating also decreases the device complexity. The limit of detection (LOD) of the LIG gas sensor with in situ synthesized MoS, CuO, and Ag/ZnO to NO, HS, and trimethylamine (TMA) is 2.7, 9.8, and 5.6 ppb, respectively. Taken together with the high sensitivity, good selectivity, rapid response/recovery, and tunable operating temperature, the integrated LIG gas sensor array can identify multiple gas species in the environment or exhaled breath.
气敏半导体纳米材料(如金属氧化物、氧化石墨烯和过渡金属二硫属化物)及其异质结在化学电阻式气体传感器中具有巨大潜力。然而,它们通常需要单独的合成方法(如水热法、溶胶 - 凝胶法和共沉淀法),并且通过浇铸将它们集成到叉指电极(IDE)上时,界面性能也较弱。这项工作展示了在激光诱导石墨烯(LIG)泡沫上原位激光辅助合成和图案化各种传感纳米材料及其异质结,以形成LIG复合材料作为灵活且可拉伸的气体传感平台。通过激光刻划在顶部分配有纳米材料前驱体的多孔LIG线或图案,以实现相应纳米材料的原位生长。通过创建不同类型的气敏材料,包括过渡金属二硫属化物(如MoS)、金属氧化物(如CuO)、贵金属掺杂金属氧化物(如Ag/ZnO)和复合金属氧化物(如InO/CrO),突出了所提出方法的多功能性。通过省去IDE和单独的加热器,具有自热功能的LIG气体传感平台还降低了器件复杂性。原位合成的MoS、CuO和Ag/ZnO的LIG气体传感器对NO、HS和三甲胺(TMA)的检测限分别为2.7、9.8和5.6 ppb。结合高灵敏度、良好的选择性、快速的响应/恢复以及可调节的工作温度,集成的LIG气体传感器阵列可以识别环境或呼出气体中的多种气体种类。